Multimodal imaging-guided sonodynamic therapy for orthotopic liver cancer using a functionalized sonosensitizer

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-01-04 DOI:10.1016/j.nantod.2024.102618
Mengxuan Wang , Nisi Zhang , Rui Li , Josquin Foiret , Katherine W. Ferrara , Xiuli Yue , Zhifei Dai
{"title":"Multimodal imaging-guided sonodynamic therapy for orthotopic liver cancer using a functionalized sonosensitizer","authors":"Mengxuan Wang ,&nbsp;Nisi Zhang ,&nbsp;Rui Li ,&nbsp;Josquin Foiret ,&nbsp;Katherine W. Ferrara ,&nbsp;Xiuli Yue ,&nbsp;Zhifei Dai","doi":"10.1016/j.nantod.2024.102618","DOIUrl":null,"url":null,"abstract":"<div><div>Liver cancer remains a significant global health challenge, with rising incidence rates and limited treatment options, underscoring the urgent need for innovative and effective therapeutic strategies. Sonodynamic therapy (SDT) stands as a promising non-invasive treatment technique, yet its advancement faces challenges due to difficulties in precisely co-localizing the tumor, sonosensitizers, and focused ultrasound (FUS). Additionally, the absence of feasible methods for <em>in vivo</em> detection of reactive oxygen species (ROS) hampers further research and development in this field. Herein, our study introduces a novel sonosensitizer, a phthalocyanine-conjugated mesoporous silicate nanoparticle loaded with allylhydrazine (PAMSN). We confirm that PAMSN not only amplifies the fluorescent signal of phthalocyanine (1.9-fold) but also generates nitrogen gas bubbles via the interaction between allylhydrazine (ALZ) and ROS. This distinct attribute positions PAMSN as a versatile multimodal contrast agent suitable for <em>in vivo</em> tumor imaging and SDT applications. Moreover, we establish a FUS platform that integrates fluorescent and ultrasonic imaging guidance, ensuring the precise delivery of ultrasound to the targeted area. In conjunction with PAMSN, this platform can effectively treat orthotopic liver cancer in a murine model while <em>in vivo</em> monitoring of ROS and detection of cavitation are enabled. In conclusion, PAMSN-mediated SDT with the multimodal imaging-guided SDT platform facilitates a precise and controllable SDT process, providing a promising tool for safer and more effective SDT in clinical tumor treatment.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102618"},"PeriodicalIF":13.2000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004742","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver cancer remains a significant global health challenge, with rising incidence rates and limited treatment options, underscoring the urgent need for innovative and effective therapeutic strategies. Sonodynamic therapy (SDT) stands as a promising non-invasive treatment technique, yet its advancement faces challenges due to difficulties in precisely co-localizing the tumor, sonosensitizers, and focused ultrasound (FUS). Additionally, the absence of feasible methods for in vivo detection of reactive oxygen species (ROS) hampers further research and development in this field. Herein, our study introduces a novel sonosensitizer, a phthalocyanine-conjugated mesoporous silicate nanoparticle loaded with allylhydrazine (PAMSN). We confirm that PAMSN not only amplifies the fluorescent signal of phthalocyanine (1.9-fold) but also generates nitrogen gas bubbles via the interaction between allylhydrazine (ALZ) and ROS. This distinct attribute positions PAMSN as a versatile multimodal contrast agent suitable for in vivo tumor imaging and SDT applications. Moreover, we establish a FUS platform that integrates fluorescent and ultrasonic imaging guidance, ensuring the precise delivery of ultrasound to the targeted area. In conjunction with PAMSN, this platform can effectively treat orthotopic liver cancer in a murine model while in vivo monitoring of ROS and detection of cavitation are enabled. In conclusion, PAMSN-mediated SDT with the multimodal imaging-guided SDT platform facilitates a precise and controllable SDT process, providing a promising tool for safer and more effective SDT in clinical tumor treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
An immunogenic cell death dual-nanoamplifier for the reverse of chemotherapy resistance and immune escape in metastatic colon cancer Advances in the durability of biomimetic superamphiphobic surfaces Lenalidomide-utilizing self-assembled immunogenic cell death-inducing heparin/doxorubicin nanocomplex for anticancer immunotherapy Competition between ordered morphologies of functionalized silver nanoparticles elucidated by a joint experimental and multiscale theoretical study Reticular photothermal traps enabling transparent coatings with exceptional all-day icephobicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1