DLE-YOLO: An efficient object detection algorithm with dual-branch lightweight excitation network

Peitao Cheng , Xuanjiao Lei , Haoran Chen , Xiumei Wang
{"title":"DLE-YOLO: An efficient object detection algorithm with dual-branch lightweight excitation network","authors":"Peitao Cheng ,&nbsp;Xuanjiao Lei ,&nbsp;Haoran Chen ,&nbsp;Xiumei Wang","doi":"10.1016/j.jiixd.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>As a computer vision task, object detection algorithms can be applied to various real-world scenarios. However, efficient algorithms often come with a large number of parameters and high computational complexity. To meet the demand for high-performance object detection algorithms on mobile devices and embedded devices with limited computational resources, we propose a new lightweight object detection algorithm called DLE-YOLO. Firstly, we design a novel backbone called dual-branch lightweight excitation network (DLEN) for feature extraction, which is mainly constructed by dual-branch lightweight excitation units (DLEU). DLEU is stacked with different numbers of dual-branch lightweight excitation blocks (DLEB), which can extract comprehensive features and integrate information between different channels of features. Secondly, in order to enhance the network to capture key feature information in the regions of interest, the attention model HS-coordinate attention (HS-CA) is introduced into the network. Thirdly, the localization loss utilizes SIoU loss to further optimize the accuracy of the bounding box. Our method achieves a mAP value of 46.0% on the MS-COCO dataset, which is a 2% mAP improvement compared to the baseline YOLOv5-m, while bringing a 19.3% reduction in parameter count and a 12.9% decrease in GFLOPs. Furthermore, our method outperforms some advanced lightweight object detection algorithms, validating the effectiveness of our approach.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 2","pages":"Pages 91-102"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a computer vision task, object detection algorithms can be applied to various real-world scenarios. However, efficient algorithms often come with a large number of parameters and high computational complexity. To meet the demand for high-performance object detection algorithms on mobile devices and embedded devices with limited computational resources, we propose a new lightweight object detection algorithm called DLE-YOLO. Firstly, we design a novel backbone called dual-branch lightweight excitation network (DLEN) for feature extraction, which is mainly constructed by dual-branch lightweight excitation units (DLEU). DLEU is stacked with different numbers of dual-branch lightweight excitation blocks (DLEB), which can extract comprehensive features and integrate information between different channels of features. Secondly, in order to enhance the network to capture key feature information in the regions of interest, the attention model HS-coordinate attention (HS-CA) is introduced into the network. Thirdly, the localization loss utilizes SIoU loss to further optimize the accuracy of the bounding box. Our method achieves a mAP value of 46.0% on the MS-COCO dataset, which is a 2% mAP improvement compared to the baseline YOLOv5-m, while bringing a 19.3% reduction in parameter count and a 12.9% decrease in GFLOPs. Furthermore, our method outperforms some advanced lightweight object detection algorithms, validating the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Boosting brain-computer interface performance through cognitive training: A brain-centric approach Hand-aware graph convolution network for skeleton-based sign language recognition Composite fixed-length ordered features with index-of-max transformation for high-performing and secure palmprint template protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1