Fluid-structure interaction analysis and density-based topology optimization of single pad externally adjustable fluid film bearing operating in high-speed application
Harishkumar Kamat , Chandrakant R. Kini , B. Satish Shenoy
{"title":"Fluid-structure interaction analysis and density-based topology optimization of single pad externally adjustable fluid film bearing operating in high-speed application","authors":"Harishkumar Kamat , Chandrakant R. Kini , B. Satish Shenoy","doi":"10.1016/j.asej.2024.103203","DOIUrl":null,"url":null,"abstract":"<div><div>Topology optimization has emerged as a promising technique to make the machines/machine components lightweight without compromising performance. This article investigates topology optimization of single pad externally adjustable fluid bearing operating in the high-speed application with two-way fluid–structure interaction (FSI) findings. The use of circular profile bearing in modern high-speed turbomachinery is limited due to hydrodynamic instability. Hence, advancements in the field of non-circular bearings, such as single-pad externally adjustable bearings, can be utilized to overcome this challenge. One-way FSI and two-way FSI analyses are performed initially on these as single-pad externally adjustable bearing working at various rotor speeds at a high eccentricity ratio. Further, using the results of two-way FSI, a density-based topology optimization (TO) technique is applied using ANSYS workbench software. TO results showed that the weight of the pad bearing can be reduced to 38.14%, which helps the bearing manufacturers to accurately predict optimum material distribution within the design space.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 1","pages":"Article 103203"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924005847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Topology optimization has emerged as a promising technique to make the machines/machine components lightweight without compromising performance. This article investigates topology optimization of single pad externally adjustable fluid bearing operating in the high-speed application with two-way fluid–structure interaction (FSI) findings. The use of circular profile bearing in modern high-speed turbomachinery is limited due to hydrodynamic instability. Hence, advancements in the field of non-circular bearings, such as single-pad externally adjustable bearings, can be utilized to overcome this challenge. One-way FSI and two-way FSI analyses are performed initially on these as single-pad externally adjustable bearing working at various rotor speeds at a high eccentricity ratio. Further, using the results of two-way FSI, a density-based topology optimization (TO) technique is applied using ANSYS workbench software. TO results showed that the weight of the pad bearing can be reduced to 38.14%, which helps the bearing manufacturers to accurately predict optimum material distribution within the design space.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.