Jinpeng Fang , Lai-Chang Zhang , Nianwei Dai , Ruixiang Liu , Hao Yao , Zhaoxin Lao , Chao Chen , Yachao Zhang , Sizhu Wu
{"title":"Femtosecond laser-induced micro/nanostructures facilitated multiple passivation and long-term anti-corrosion property of laser powder bed fused Ti-6Al-4V alloy","authors":"Jinpeng Fang , Lai-Chang Zhang , Nianwei Dai , Ruixiang Liu , Hao Yao , Zhaoxin Lao , Chao Chen , Yachao Zhang , Sizhu Wu","doi":"10.1016/j.corsci.2025.112757","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of non-equilibrium phases and microstructural defects reduces the passivation performance and corrosion resistance of laser powder bed fusion (LPBF) produced Ti-6Al-4V alloy, threatening its safe service as important components. This work aims to enhance the corrosion resistance of LPBF-produced Ti-6Al-4V alloy through femtosecond laser surface processing (FLSP). FLSP at lower powers (<300 mW) or higher powers (>400 mW) creates uniform layers of periodic nanostructures and hierarchical micro/nanostructures on the alloy surface. The prolonged exposure to air significantly accelerates the oxidation of Ti<sup>2 +</sup> to Ti<sup>4+</sup> on FLSP-induced micro/nanostructures, resulting in multiple passivation behaviors and remarkable improvement in corrosion resistance.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"246 ","pages":"Article 112757"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25000848","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of non-equilibrium phases and microstructural defects reduces the passivation performance and corrosion resistance of laser powder bed fusion (LPBF) produced Ti-6Al-4V alloy, threatening its safe service as important components. This work aims to enhance the corrosion resistance of LPBF-produced Ti-6Al-4V alloy through femtosecond laser surface processing (FLSP). FLSP at lower powers (<300 mW) or higher powers (>400 mW) creates uniform layers of periodic nanostructures and hierarchical micro/nanostructures on the alloy surface. The prolonged exposure to air significantly accelerates the oxidation of Ti2 + to Ti4+ on FLSP-induced micro/nanostructures, resulting in multiple passivation behaviors and remarkable improvement in corrosion resistance.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.