{"title":"Fast evaluation of generalized Todd polynomials: Applications to MacMahon's partition analysis and integer programming","authors":"Guoce Xin , Yingrui Zhang , ZiHao Zhang","doi":"10.1016/j.jsc.2025.102420","DOIUrl":null,"url":null,"abstract":"<div><div>The Todd polynomials, denoted as <span><math><msub><mrow><mtext>td</mtext></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>, are characterized by their generating function:<span><span><span><math><munder><mo>∑</mo><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></munder><msub><mrow><mtext>td</mtext></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>=</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><mfrac><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> These polynomials serve as fundamental components in the Todd class of toric varieties – a concept of significant relevance in the study of lattice polytopes and number theory. We identify that generalized Todd polynomials emerge naturally within the realm of MacMahon's partition analysis, particularly in the context of computing the Ehrhart series. We introduce an efficient method for the evaluation of generalized Todd polynomials for numerical values of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. This is achieved through the development of expedited operations in the quotient ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mo>[</mo><mi>s</mi><mo>]</mo><mo>]</mo></math></span> modulo <span><math><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, where <em>p</em> is a large prime. The practical implications of our work are demonstrated through two applications: firstly, we facilitate a recalculated resolution of the Ehrhart series for magic squares of order 6, a problem initially addressed by the first author, reducing computation time from 70 days to approximately 1 day; secondly, we present a polynomial-time algorithm for Integer Linear Programming in the scenario where the dimension is fixed, exhibiting a notable enhancement in computational efficiency.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102420"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Todd polynomials, denoted as , are characterized by their generating function: These polynomials serve as fundamental components in the Todd class of toric varieties – a concept of significant relevance in the study of lattice polytopes and number theory. We identify that generalized Todd polynomials emerge naturally within the realm of MacMahon's partition analysis, particularly in the context of computing the Ehrhart series. We introduce an efficient method for the evaluation of generalized Todd polynomials for numerical values of . This is achieved through the development of expedited operations in the quotient ring modulo , where p is a large prime. The practical implications of our work are demonstrated through two applications: firstly, we facilitate a recalculated resolution of the Ehrhart series for magic squares of order 6, a problem initially addressed by the first author, reducing computation time from 70 days to approximately 1 day; secondly, we present a polynomial-time algorithm for Integer Linear Programming in the scenario where the dimension is fixed, exhibiting a notable enhancement in computational efficiency.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.