Electrokinetic remediation of chromium contaminated soil: Impact of particle size on treatment efficiency and bioavailability

IF 5.4 Q2 ENGINEERING, ENVIRONMENTAL Journal of hazardous materials advances Pub Date : 2025-02-01 DOI:10.1016/j.hazadv.2024.100547
J. Akansha , Bhaskar Das , N. Rajasekar
{"title":"Electrokinetic remediation of chromium contaminated soil: Impact of particle size on treatment efficiency and bioavailability","authors":"J. Akansha ,&nbsp;Bhaskar Das ,&nbsp;N. Rajasekar","doi":"10.1016/j.hazadv.2024.100547","DOIUrl":null,"url":null,"abstract":"<div><div>The electrokinetic remediation (EKR) is a potential method employed for removal and recovery of heavy metals from soil and various waste materials. However, it demonstrated promising efficacy in laboratory settings, diminished in practical implementations as a result of insufficient comprehension of in-situ conditions. In this study, experimental investigations were conducted to determine the effect of soil particle size on the performance of EKR. Four distinct soil particle sizes were utilized i.e., retained on 1.18 mm (EKR-A), 300 μm (EKR-B), 150 μm (EKR-C), and passing through 150 μm (EKR-D). The alteration in bioavailability as well as physiochemical properties of Chromium (Cr) was investigated through sequential extraction process (SEP) along with soil characterization techniques such as FE-SEM-EDX, XRD, FT-IR. Studies of soil particle size, composition and morphology indicate that as particle size decreases, pollutant concentration increases. Consensus was reached through the research that the treatment efficiency is substantially impacted by the particle size of the soil; in other words, smaller particle sizes led to diminished efficacy. The cumulative Cr removal percentages for EKR-A, EKR-B, EKR-C, and EKR-D were achieved as 27 %, 19 %, 10 %, and 7 %, respectively. The SEP study revealed that the initial soil Cr-concentration was predominated with oxidizable fraction (63–81 %) and the EKR facilitates the extraction of pollutants from the soil matrix by increasing their leachability from 1 % to 30 %, thus providing both removal and recovery of Cr as a feasible option.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"17 ","pages":"Article 100547"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624001475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrokinetic remediation (EKR) is a potential method employed for removal and recovery of heavy metals from soil and various waste materials. However, it demonstrated promising efficacy in laboratory settings, diminished in practical implementations as a result of insufficient comprehension of in-situ conditions. In this study, experimental investigations were conducted to determine the effect of soil particle size on the performance of EKR. Four distinct soil particle sizes were utilized i.e., retained on 1.18 mm (EKR-A), 300 μm (EKR-B), 150 μm (EKR-C), and passing through 150 μm (EKR-D). The alteration in bioavailability as well as physiochemical properties of Chromium (Cr) was investigated through sequential extraction process (SEP) along with soil characterization techniques such as FE-SEM-EDX, XRD, FT-IR. Studies of soil particle size, composition and morphology indicate that as particle size decreases, pollutant concentration increases. Consensus was reached through the research that the treatment efficiency is substantially impacted by the particle size of the soil; in other words, smaller particle sizes led to diminished efficacy. The cumulative Cr removal percentages for EKR-A, EKR-B, EKR-C, and EKR-D were achieved as 27 %, 19 %, 10 %, and 7 %, respectively. The SEP study revealed that the initial soil Cr-concentration was predominated with oxidizable fraction (63–81 %) and the EKR facilitates the extraction of pollutants from the soil matrix by increasing their leachability from 1 % to 30 %, thus providing both removal and recovery of Cr as a feasible option.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of hazardous materials advances
Journal of hazardous materials advances Environmental Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
‘‘Spatial distribution, abundance, and risk assessment of microplastics in the surface water of Kaptai Lake: Southeast Asia's largest artificial reservoir’’ Assessment of the health of soils polluted by municipal solid waste landfill Supercritical water gasification for hospital wastewater Biofilm formation on the polyethylene terephthalate plastic surface weathered under laboratory and real landfill conditions Preparation of recyclable g-C3N4/TiO2 heterojunction/alginate hydrogel microbeads and investigation of their adsorption-photocatalytic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1