{"title":"Sources, distribution, and impacts of emerging contaminants – a critical review on contamination of landfill leachate","authors":"Rupanjana Das, Deep Raj","doi":"10.1016/j.hazadv.2025.100602","DOIUrl":null,"url":null,"abstract":"<div><div>A broad range of artificial or naturally occurring chemicals known as emerging contaminants (ECs) are increasingly found in landfill leachate and provide serious dangers to human health and the environment. This critical analysis investigates the origin, dispersion, and effects of ECs in relation to landfill settings. Landfills serve as EC reservoirs because of the diverse mix of e-waste, industrial compounds, pharmaceuticals, personal care items, and endocrine-disrupting chemicals. Factors including landfill design, waste type, and environmental conditions affect the mobility and permanence of these toxins as they seep into nearby soils, groundwater, and surface water through leachate. ECs have been found in trace amounts in the landfill leachate, and are polar substances having a brief half-life. Concerns over the consequences of newly discovered contaminants on the environment and human health have grown because of their increased detection in the landfill leachate. Additionally, they increase the hazards to human populations by having the ability to pollute agricultural soils and sources of drinking water. The significant finding is that the ECs in landfill leachate can be generated from various sites whether it is from municipal solid wastes, agricultural runoffs, or industrial wastes which become persistent in nature increasing risk to human health and environment. The study identifies important knowledge gaps regarding the development of harmful transformation products, the collective effects of EC combinations, and the inadequacy of traditional treatment techniques in reducing EC pollution. By this it can be concluded that advanced analytical methods, creative leachate treatment approaches, and strong regulatory frameworks are needed to address these issues and successfully stop EC discharge and control its negative effects on the environment and human health. In order to reduce the hazards caused by newly discovered pollutants in landfill leachate and to support environmentally friendly waste management techniques, this analysis emphasizes the necessity of both international and regional initiatives.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"17 ","pages":"Article 100602"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416625000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A broad range of artificial or naturally occurring chemicals known as emerging contaminants (ECs) are increasingly found in landfill leachate and provide serious dangers to human health and the environment. This critical analysis investigates the origin, dispersion, and effects of ECs in relation to landfill settings. Landfills serve as EC reservoirs because of the diverse mix of e-waste, industrial compounds, pharmaceuticals, personal care items, and endocrine-disrupting chemicals. Factors including landfill design, waste type, and environmental conditions affect the mobility and permanence of these toxins as they seep into nearby soils, groundwater, and surface water through leachate. ECs have been found in trace amounts in the landfill leachate, and are polar substances having a brief half-life. Concerns over the consequences of newly discovered contaminants on the environment and human health have grown because of their increased detection in the landfill leachate. Additionally, they increase the hazards to human populations by having the ability to pollute agricultural soils and sources of drinking water. The significant finding is that the ECs in landfill leachate can be generated from various sites whether it is from municipal solid wastes, agricultural runoffs, or industrial wastes which become persistent in nature increasing risk to human health and environment. The study identifies important knowledge gaps regarding the development of harmful transformation products, the collective effects of EC combinations, and the inadequacy of traditional treatment techniques in reducing EC pollution. By this it can be concluded that advanced analytical methods, creative leachate treatment approaches, and strong regulatory frameworks are needed to address these issues and successfully stop EC discharge and control its negative effects on the environment and human health. In order to reduce the hazards caused by newly discovered pollutants in landfill leachate and to support environmentally friendly waste management techniques, this analysis emphasizes the necessity of both international and regional initiatives.