{"title":"A hybrid strategy for numerical simulations of fluid-structure interaction problems in ocean engineering","authors":"Xin Liao, Chan Ghee Koh, Yean Khow Chow","doi":"10.1016/j.apor.2025.104433","DOIUrl":null,"url":null,"abstract":"<div><div>A hybrid strategy combining the advantages of the meshless Consistent Particle Method (CPM) and the mesh-based Finite Element Method (FEM) is proposed in this paper to solve fluid-structure interaction problems. Water is modelled by CPM, whereas deformable structure is solved by FEM. Unlike some traditional particle methods that require a kernel function in computing spatial derivatives, CPM utilizes Taylor series expansion and avoids the use of artificial values of physical parameters (such as artificial viscosity and sound speed). The interaction between water and structure is achieved by a partitioned approach for its flexibility and ease of implementation. To ensure compatibility between CPM and FEM solutions at the fluid-structure interface, an iteration scheme of enforcing pressure Poisson equation (PPE) is proposed. The accuracy and stability of the proposed hybrid strategy are validated through three benchmark examples: water column on an elastic plate, sloshing of sunflower oil interacting with an elastic baffle, and a dam break with an elastic gate. Comparisons between CPM-FEM results with published experimental and numerical results demonstrate the effectiveness and advantages of the proposed hybrid strategy.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"155 ","pages":"Article 104433"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725000215","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
A hybrid strategy combining the advantages of the meshless Consistent Particle Method (CPM) and the mesh-based Finite Element Method (FEM) is proposed in this paper to solve fluid-structure interaction problems. Water is modelled by CPM, whereas deformable structure is solved by FEM. Unlike some traditional particle methods that require a kernel function in computing spatial derivatives, CPM utilizes Taylor series expansion and avoids the use of artificial values of physical parameters (such as artificial viscosity and sound speed). The interaction between water and structure is achieved by a partitioned approach for its flexibility and ease of implementation. To ensure compatibility between CPM and FEM solutions at the fluid-structure interface, an iteration scheme of enforcing pressure Poisson equation (PPE) is proposed. The accuracy and stability of the proposed hybrid strategy are validated through three benchmark examples: water column on an elastic plate, sloshing of sunflower oil interacting with an elastic baffle, and a dam break with an elastic gate. Comparisons between CPM-FEM results with published experimental and numerical results demonstrate the effectiveness and advantages of the proposed hybrid strategy.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.