Data-driven price trends prediction of Ethereum: A hybrid machine learning and signal processing approach

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Blockchain-Research and Applications Pub Date : 2024-12-01 DOI:10.1016/j.bcra.2024.100231
Ebenezer Fiifi Emire Atta Mills , Yuexin Liao , Zihui Deng
{"title":"Data-driven price trends prediction of Ethereum: A hybrid machine learning and signal processing approach","authors":"Ebenezer Fiifi Emire Atta Mills ,&nbsp;Yuexin Liao ,&nbsp;Zihui Deng","doi":"10.1016/j.bcra.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><div>Due to recent fluctuations in cryptocurrency prices, Ethereum has gained recognition as an investment asset. Given its volatile nature, there is a significant demand for accurate predictions to guide investment choices. This paper examines the most influential features of the daily price trends of Ethereum using a novel approach that combines the Random Forest classifier and the ReliefF method. Integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Short-Time Fourier Transform (STFT) results in high accuracy and performance metrics for Ethereum price trend predictions. This method stands out from prior research, primarily based on time series analysis, by enhancing pattern recognition across time and frequency domains. This adaptability leads to better prediction capabilities with accuracy reaching 76.56% in a highly chaotic market such as cryptocurrency. The STFT's ability to reveal cyclical trends in Ethereum's price provides valuable insights for the ANFIS model, leading to more precise predictions and addressing a notable gap in cryptocurrency research. Hence, compared to models in literature such as Gradient Boosting, Long Short-Term Memory, Random Forest, and Extreme Gradient Boosting, the proposed model adapts to complex data patterns and captures intricate non-linear relationships, making it well-suited for cryptocurrency prediction.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"5 4","pages":"Article 100231"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000447","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to recent fluctuations in cryptocurrency prices, Ethereum has gained recognition as an investment asset. Given its volatile nature, there is a significant demand for accurate predictions to guide investment choices. This paper examines the most influential features of the daily price trends of Ethereum using a novel approach that combines the Random Forest classifier and the ReliefF method. Integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Short-Time Fourier Transform (STFT) results in high accuracy and performance metrics for Ethereum price trend predictions. This method stands out from prior research, primarily based on time series analysis, by enhancing pattern recognition across time and frequency domains. This adaptability leads to better prediction capabilities with accuracy reaching 76.56% in a highly chaotic market such as cryptocurrency. The STFT's ability to reveal cyclical trends in Ethereum's price provides valuable insights for the ANFIS model, leading to more precise predictions and addressing a notable gap in cryptocurrency research. Hence, compared to models in literature such as Gradient Boosting, Long Short-Term Memory, Random Forest, and Extreme Gradient Boosting, the proposed model adapts to complex data patterns and captures intricate non-linear relationships, making it well-suited for cryptocurrency prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
期刊最新文献
Coordinating REST interactions in service choreographies using blockchain Blockchain-enabled secure and authentic Nash equilibrium strategies for heterogeneous networked hub of electric vehicle charging stations Looking for stability in proof-of-stake based consensus mechanisms Robust cooperative spectrum sensing in cognitive radio blockchain network using SHA-3 algorithm A prototype model of zero trust architecture blockchain with EigenTrust-based practical Byzantine fault tolerance protocol to manage decentralized clinical trials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1