{"title":"Deductive verification of solidity smart contracts with SSCalc","authors":"Diego Marmsoler, Billy Thornton","doi":"10.1016/j.scico.2025.103267","DOIUrl":null,"url":null,"abstract":"<div><div>Smart contracts are programs stored on the blockchain, often developed in a high-level programming language, the most popular of which is Solidity. Smart contracts are used to automate financial transactions and thus bugs can lead to large financial losses. With this paper, we address this problem by describing a verification environment for Solidity in Isabelle/HOL. To this end, we first describe a calculus to reason about Solidity smart contracts. The calculus is formalized in Isabelle/HOL and its soundness is mechanically verified. Then, we verify a theorem which guarantees that all instances of an arbitrary contract type satisfy a corresponding invariant. The theorem can be used to verify invariants for Solidity smart contracts. This is demonstrated by a case study in which we use our approach to verify a simple token implemented in Solidity. Our results show that the framework has the potential to significantly reduce the verification effort compared to verifying directly from the semantics.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"243 ","pages":"Article 103267"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000061","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Smart contracts are programs stored on the blockchain, often developed in a high-level programming language, the most popular of which is Solidity. Smart contracts are used to automate financial transactions and thus bugs can lead to large financial losses. With this paper, we address this problem by describing a verification environment for Solidity in Isabelle/HOL. To this end, we first describe a calculus to reason about Solidity smart contracts. The calculus is formalized in Isabelle/HOL and its soundness is mechanically verified. Then, we verify a theorem which guarantees that all instances of an arbitrary contract type satisfy a corresponding invariant. The theorem can be used to verify invariants for Solidity smart contracts. This is demonstrated by a case study in which we use our approach to verify a simple token implemented in Solidity. Our results show that the framework has the potential to significantly reduce the verification effort compared to verifying directly from the semantics.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.