Toward sustainable propylene: A comparison of current and future production pathways

Parsa Shirzad, Ivan Kantor
{"title":"Toward sustainable propylene: A comparison of current and future production pathways","authors":"Parsa Shirzad,&nbsp;Ivan Kantor","doi":"10.1016/j.rset.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><div>Propylene, a fundamental chemical, has witnessed a significant surge in demand in recent decades, establishing itself as the second most primary intermediate compound after ethylene. Propylene manufacturing currently depends on non-renewable resources, specifically naphtha or propane from fossil sources. The conventional methods are economically feasible and mature; however, they emit greenhouse gases and consume non-renewable resources. Therefore, it is necessary to transition to more sustainable production methods. This review aims to provide and analyze many possible routes for the production of propylene using sustainable resources. The categorization of these pathways is determined by the raw material employed for the manufacture of propylene. Out of the several paths considered, bio-propane dehydrogenation stands out as a viable option for producing propylene in the future. Furthermore, this study examines and reports on the analysis of catalyst selection, the design of operating conditions, and the yield and selectivity of propylene in each pathway. Zeolite-based catalysts, particularly ZSM-5, exhibit remarkable selectivity in propylene synthesis across several processes. To fully comprehend the sustainability and feasibility of these paths, this research also reviews environmental impact and techno-economic metrics of several established propylene production methods.</div></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"7 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X24000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Propylene, a fundamental chemical, has witnessed a significant surge in demand in recent decades, establishing itself as the second most primary intermediate compound after ethylene. Propylene manufacturing currently depends on non-renewable resources, specifically naphtha or propane from fossil sources. The conventional methods are economically feasible and mature; however, they emit greenhouse gases and consume non-renewable resources. Therefore, it is necessary to transition to more sustainable production methods. This review aims to provide and analyze many possible routes for the production of propylene using sustainable resources. The categorization of these pathways is determined by the raw material employed for the manufacture of propylene. Out of the several paths considered, bio-propane dehydrogenation stands out as a viable option for producing propylene in the future. Furthermore, this study examines and reports on the analysis of catalyst selection, the design of operating conditions, and the yield and selectivity of propylene in each pathway. Zeolite-based catalysts, particularly ZSM-5, exhibit remarkable selectivity in propylene synthesis across several processes. To fully comprehend the sustainability and feasibility of these paths, this research also reviews environmental impact and techno-economic metrics of several established propylene production methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Spatial heterogeneity in deployment and upscaling of wind power in Swedish municipalities Corrigendum to “Is there a case for a coal moratorium in Indonesia? Power sector optimization modeling of low-carbon strategies” [Renewable and Sustainable Energy Transition (2024) 100074] Driving sustainable energy transition: Understanding residential rooftop solar photovoltaic adoption in Malaysia through a behavioural analysis Replacing fossil fuel-based power plants with renewables to meet Iran's environmental commitments in the electricity sector Just energy transition in coal regions: Innovative framework for assessing territorial just transition plans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1