{"title":"PFWNN: A deep learning method for solving forward and inverse problems of phase-field models","authors":"Gang Bao , Chang Ma , Yuxuan Gong","doi":"10.1016/j.jcp.2025.113799","DOIUrl":null,"url":null,"abstract":"<div><div>Phase-field models have been widely used to investigate the phase transformation phenomena. However, it is difficult to solve the problems numerically due to their strong nonlinearities and higher-order terms. This work is devoted to solving forward and inverse problems of the phase-field models by a novel deep learning framework named Phase-Field Weak-form Neural Networks (PFWNN), which is based on the weak forms of the phase-field equations. In this framework, the weak solutions are parameterized as deep neural networks with periodic layers, while the test function space is constructed by functions compactly supported in small regions. The PFWNN can efficiently solve the phase-field equations characterizing the sharp transitions and identify the important parameters by employing the weak forms. It also allows local training in small regions, which significantly reduce the computational cost. Moreover, it can guarantee the residual descending along the time marching direction, enhancing the convergence of the method. Numerical examples are presented for several benchmark problems. The results validate the efficiency and accuracy of the PFWNN. This work also sheds light on solving the forward and inverse problems of general high-order time-dependent partial differential equations.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"527 ","pages":"Article 113799"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125000828","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Phase-field models have been widely used to investigate the phase transformation phenomena. However, it is difficult to solve the problems numerically due to their strong nonlinearities and higher-order terms. This work is devoted to solving forward and inverse problems of the phase-field models by a novel deep learning framework named Phase-Field Weak-form Neural Networks (PFWNN), which is based on the weak forms of the phase-field equations. In this framework, the weak solutions are parameterized as deep neural networks with periodic layers, while the test function space is constructed by functions compactly supported in small regions. The PFWNN can efficiently solve the phase-field equations characterizing the sharp transitions and identify the important parameters by employing the weak forms. It also allows local training in small regions, which significantly reduce the computational cost. Moreover, it can guarantee the residual descending along the time marching direction, enhancing the convergence of the method. Numerical examples are presented for several benchmark problems. The results validate the efficiency and accuracy of the PFWNN. This work also sheds light on solving the forward and inverse problems of general high-order time-dependent partial differential equations.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.