Design and control of high-power density converters with power factor correction using multilevel rectifiers

Prakash A. Kharade, J. Jeyavel, Nitin R. Ingale, Shashikant D. Jadhav
{"title":"Design and control of high-power density converters with power factor correction using multilevel rectifiers","authors":"Prakash A. Kharade,&nbsp;J. Jeyavel,&nbsp;Nitin R. Ingale,&nbsp;Shashikant D. Jadhav","doi":"10.1016/j.prime.2024.100881","DOIUrl":null,"url":null,"abstract":"<div><div>High-power density converters are critical in modern electrical systems, particularly in applications requiring efficient power conversion and high performance, such as industrial drives, renewable energy systems, and electric vehicles. The majority of active-controlled AC/DC converters are built using the boost converter technique. This technique offers a high input Power Factor (PF), which lowers total harmonic distortion and circuit power losses while increasing conversion efficiency. The objective of the research was to investigate the optimal methods for designing and producing PFCs with high power densities and to assess the effectiveness of both topologies through simulation and experimental testing. The work focuses on designing and controlling high-power density converters with power factor correction using multilevel rectifiers. It aims to enhance efficiency, reduce harmonic distortion, improve power quality, and optimize performance in high-power applications through advanced converter topologies and control strategies. In classic boost converter-based PFC systems, the input filter inductor of the boost converter's size and the bank of twice-line frequency energy buffering capacitors (TLFEB) are two of the main obstacles to obtaining high power density. Accordingly, the article suggested multilevel inverters for high power density. Initially, the study proposed the three-phase dual boost five-level rectifier to improve core coupled inductors. The paper also introduces a six-level Flying Capacitor Multilevel (FCML) boost converter-based Power Factor Correction (PFC) front end. Due to the FCML converter's unique properties, the filter inductor's size may be drastically reduced while keeping high efficiency, thus enhancing the PFC front end's power density. By using a single-phase cascaded H-bridge inverter to optimise the boost converter voltage and current parameters, the performance of both PFC topologies was examined. The combination of high-energy-density ceramic capacitors and a single-phase cascaded H-bridge seven-level inverter converter can significantly enhance the performance of the three-phase rectifier. The multilevel converter's dynamics have been analysed and implemented using Matlab software. For universal AC input, 1.5 kW power rating, and 400-V DC output, a hardware prototype is created. The hardware prototype shows increased efficiency and power density in comparison to existing methods while maintaining a high PF and minimal THD.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"11 ","pages":"Article 100881"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671124004583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-power density converters are critical in modern electrical systems, particularly in applications requiring efficient power conversion and high performance, such as industrial drives, renewable energy systems, and electric vehicles. The majority of active-controlled AC/DC converters are built using the boost converter technique. This technique offers a high input Power Factor (PF), which lowers total harmonic distortion and circuit power losses while increasing conversion efficiency. The objective of the research was to investigate the optimal methods for designing and producing PFCs with high power densities and to assess the effectiveness of both topologies through simulation and experimental testing. The work focuses on designing and controlling high-power density converters with power factor correction using multilevel rectifiers. It aims to enhance efficiency, reduce harmonic distortion, improve power quality, and optimize performance in high-power applications through advanced converter topologies and control strategies. In classic boost converter-based PFC systems, the input filter inductor of the boost converter's size and the bank of twice-line frequency energy buffering capacitors (TLFEB) are two of the main obstacles to obtaining high power density. Accordingly, the article suggested multilevel inverters for high power density. Initially, the study proposed the three-phase dual boost five-level rectifier to improve core coupled inductors. The paper also introduces a six-level Flying Capacitor Multilevel (FCML) boost converter-based Power Factor Correction (PFC) front end. Due to the FCML converter's unique properties, the filter inductor's size may be drastically reduced while keeping high efficiency, thus enhancing the PFC front end's power density. By using a single-phase cascaded H-bridge inverter to optimise the boost converter voltage and current parameters, the performance of both PFC topologies was examined. The combination of high-energy-density ceramic capacitors and a single-phase cascaded H-bridge seven-level inverter converter can significantly enhance the performance of the three-phase rectifier. The multilevel converter's dynamics have been analysed and implemented using Matlab software. For universal AC input, 1.5 kW power rating, and 400-V DC output, a hardware prototype is created. The hardware prototype shows increased efficiency and power density in comparison to existing methods while maintaining a high PF and minimal THD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Exponential function LMS and fractional order pid based voltage power quality enhancement in distribution network A new discrete GaN-based dv/dt control circuit for megahertz frequency power converters Anomaly detection of adversarial cyber attacks on electric vehicle charging stations Assessment methodology for the resilience of energy systems in positive energy buildings Transactive energy management for efficient scheduling and storage utilization in a grid-connected renewable energy-based microgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1