Target-free vision method for planar displacement measurement of structures subjected to out-of-plane movement by UAV

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-11-30 DOI:10.1016/j.jsv.2024.118873
Dong Tan , Jun Li , Hong Hao
{"title":"Target-free vision method for planar displacement measurement of structures subjected to out-of-plane movement by UAV","authors":"Dong Tan ,&nbsp;Jun Li ,&nbsp;Hong Hao","doi":"10.1016/j.jsv.2024.118873","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of structural health monitoring, one of the essential tasks is to measure dynamic responses such as vibration displacement. With the recent advancement in computer vision, cameras are developed as alternative tools to traditional displacement sensors. Unmanned aerial vehicles (UAVs) offer mobility and can handle complex real-world situations. However, limitations of using UAVs, particularly self-motions, have hindered the accuracy in vibration displacement measurements. This paper proposes a target-free vision-based approach for measuring dynamic displacement responses using UAV. A series of videos of a beam subjected to planar motions are captured using a UAV. Stationary features on the background and target features on the structure are detected using features from accelerated segment test with adaptive threshold strategy and tracked using the Kanade–Lucas–Tomasi. UAV self-motions are estimated using motion-only bundle adjustment. Dynamic displacement responses of the structure are computed based on the displacements of target features and UAV self-motions. Results of the displacement responses and identified natural frequencies with different planar motion types and shooting angles are obtained. They are compared with those obtained by linear variable differential transducers, which demonstrates the accuracy of the proposed method for vibration displacement response measurement.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"600 ","pages":"Article 118873"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24006357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of structural health monitoring, one of the essential tasks is to measure dynamic responses such as vibration displacement. With the recent advancement in computer vision, cameras are developed as alternative tools to traditional displacement sensors. Unmanned aerial vehicles (UAVs) offer mobility and can handle complex real-world situations. However, limitations of using UAVs, particularly self-motions, have hindered the accuracy in vibration displacement measurements. This paper proposes a target-free vision-based approach for measuring dynamic displacement responses using UAV. A series of videos of a beam subjected to planar motions are captured using a UAV. Stationary features on the background and target features on the structure are detected using features from accelerated segment test with adaptive threshold strategy and tracked using the Kanade–Lucas–Tomasi. UAV self-motions are estimated using motion-only bundle adjustment. Dynamic displacement responses of the structure are computed based on the displacements of target features and UAV self-motions. Results of the displacement responses and identified natural frequencies with different planar motion types and shooting angles are obtained. They are compared with those obtained by linear variable differential transducers, which demonstrates the accuracy of the proposed method for vibration displacement response measurement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
Impact of constrained layer damping patches on the dynamic behavior of a turbofan bladed disk Editorial Board Multiple acoustic sources localization in a water tunnel using the modal theory Elucidating negative capacitance design in piezoelectric circuitry to facilitate vibration suppression enhancement assisted by energy harvesting Prediction of sound transmission through plates using spectral Gaussian basis functions and application to plates with periodic acoustic black holes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1