Wave propagation modelling approach for improved assessment of the acoustic field in closed test section wind tunnels

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-11-28 DOI:10.1016/j.jsv.2024.118858
Hugo F. Mourão Bento , Colin P. VanDercreek , Francesco Avallone , Daniele Ragni , Pieter Sijtsma , Mirjam Snellen
{"title":"Wave propagation modelling approach for improved assessment of the acoustic field in closed test section wind tunnels","authors":"Hugo F. Mourão Bento ,&nbsp;Colin P. VanDercreek ,&nbsp;Francesco Avallone ,&nbsp;Daniele Ragni ,&nbsp;Pieter Sijtsma ,&nbsp;Mirjam Snellen","doi":"10.1016/j.jsv.2024.118858","DOIUrl":null,"url":null,"abstract":"<div><div>Sound propagation in closed test section wind tunnels suffers from reflections and diffraction, which compromise acoustic measurements. In this article, it is proved possible to improve the post-processing of phased-array microphone measurements by using an approach based on the combination of numerical acoustic simulations and beamforming. A Finite Element Method solver for the Helmholtz equation is used to model the acoustic response of the experimental facility. The simulations are compared with acoustic experiments performed at TU Delft’s Low Turbulence Tunnel, using both fully reflective (baseline) and lined test sections. The solver accurately predicts the acoustic propagation from a monopole sound source at the centre of the test section to the microphones in the phased-array, for frequencies in the range <span><math><mrow><mn>500</mn><mspace></mspace><mstyle><mi>H</mi><mi>z</mi></mstyle><mo>&lt;</mo><mi>f</mi><mo>&lt;</mo><mn>2000</mn><mspace></mspace><mstyle><mi>H</mi><mi>z</mi></mstyle></mrow></math></span>. It is shown that a (lower fidelity) geometric modelling method is unable to precisely predict the acoustic response of the Low Turbulence Tunnel at these frequencies, due to strong acoustic diffraction. The numerical results are used to implement corrections to the post-processing of experimental data. A corrected version of the Source Power Integration method is able to increase the accuracy of the source’s noise levels calculation, based on a single numerical simulation with the source at the same location as in the experiment. A Green’s function correction increases the beamforming resolution and the source’s noise levels estimation accuracy from the beamforming maps, without a priori knowledge of the source’s location. Both corrections perform well at processing flow-on acoustic measurements, and the Green’s function correction shows an additional benefit. The improvement in beamforming spatial resolution leads to an increase of the signal to noise ratio.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"600 ","pages":"Article 118858"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24006205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sound propagation in closed test section wind tunnels suffers from reflections and diffraction, which compromise acoustic measurements. In this article, it is proved possible to improve the post-processing of phased-array microphone measurements by using an approach based on the combination of numerical acoustic simulations and beamforming. A Finite Element Method solver for the Helmholtz equation is used to model the acoustic response of the experimental facility. The simulations are compared with acoustic experiments performed at TU Delft’s Low Turbulence Tunnel, using both fully reflective (baseline) and lined test sections. The solver accurately predicts the acoustic propagation from a monopole sound source at the centre of the test section to the microphones in the phased-array, for frequencies in the range 500Hz<f<2000Hz. It is shown that a (lower fidelity) geometric modelling method is unable to precisely predict the acoustic response of the Low Turbulence Tunnel at these frequencies, due to strong acoustic diffraction. The numerical results are used to implement corrections to the post-processing of experimental data. A corrected version of the Source Power Integration method is able to increase the accuracy of the source’s noise levels calculation, based on a single numerical simulation with the source at the same location as in the experiment. A Green’s function correction increases the beamforming resolution and the source’s noise levels estimation accuracy from the beamforming maps, without a priori knowledge of the source’s location. Both corrections perform well at processing flow-on acoustic measurements, and the Green’s function correction shows an additional benefit. The improvement in beamforming spatial resolution leads to an increase of the signal to noise ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
Impact of constrained layer damping patches on the dynamic behavior of a turbofan bladed disk Acoustic resonances and aeroacoustic feedback mechanisms occurring at a deep cavity with an overhanging lip Editorial Board Multiple acoustic sources localization in a water tunnel using the modal theory Elucidating negative capacitance design in piezoelectric circuitry to facilitate vibration suppression enhancement assisted by energy harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1