DRL-based latency-energy offloading optimization strategy in wireless VR networks with edge computing

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2025-02-01 DOI:10.1016/j.comnet.2025.111034
Jieru Wang , Hui Xia , Lijuan Xu , Rui Zhang , Kunkun Jia
{"title":"DRL-based latency-energy offloading optimization strategy in wireless VR networks with edge computing","authors":"Jieru Wang ,&nbsp;Hui Xia ,&nbsp;Lijuan Xu ,&nbsp;Rui Zhang ,&nbsp;Kunkun Jia","doi":"10.1016/j.comnet.2025.111034","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in data paths and the resulting latency growth in Wireless Virtual Reality (WVR) can significantly affect user experience. Mobile Edge Computing emerges as an effective solution to address these issues. However, offloading methods based on Deep Reinforcement Learning (DRL) face hurdles like limited environmental exploration and prolonged user waiting time. To address the mentioned challenges in WVR edge computing, where computational offloading involves multiple devices and edge servers, we aim to minimize system latency and reduce energy consumption. Therefore, we introduce the Task Prediction and Multi-objective Optimization Algorithm (TPMOA). First, we reduce the time users wait for rendering results by predicting their viewpoints. Next, we apply an entropy-innovated DRL algorithm to the latent space for computation offloading. Through representation learning, we establish a reward function that includes latent objectives and optimizes the experience replay buffer. This approach allows us to train and select the optimal offloading strategy, thereby reducing rendering latency and system energy consumption. Our experiments show that our approach effectively tackles the challenges of limited environmental exploration ability and extended user waiting time. Specifically, our method outperforms the RNN-based AC method significantly, reducing latency by 11.39%.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"258 ","pages":"Article 111034"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625000027","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in data paths and the resulting latency growth in Wireless Virtual Reality (WVR) can significantly affect user experience. Mobile Edge Computing emerges as an effective solution to address these issues. However, offloading methods based on Deep Reinforcement Learning (DRL) face hurdles like limited environmental exploration and prolonged user waiting time. To address the mentioned challenges in WVR edge computing, where computational offloading involves multiple devices and edge servers, we aim to minimize system latency and reduce energy consumption. Therefore, we introduce the Task Prediction and Multi-objective Optimization Algorithm (TPMOA). First, we reduce the time users wait for rendering results by predicting their viewpoints. Next, we apply an entropy-innovated DRL algorithm to the latent space for computation offloading. Through representation learning, we establish a reward function that includes latent objectives and optimizes the experience replay buffer. This approach allows us to train and select the optimal offloading strategy, thereby reducing rendering latency and system energy consumption. Our experiments show that our approach effectively tackles the challenges of limited environmental exploration ability and extended user waiting time. Specifically, our method outperforms the RNN-based AC method significantly, reducing latency by 11.39%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Editorial Board A cost-provable solution for reliable in-network computing-enabled services deployment UINT: An intent-based adaptive routing architecture Coordinated multi-point by distributed hierarchical active inference with sensor feedback FedMP: A multi-pronged defense algorithm against Byzantine poisoning attacks in federated learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1