Optimization of performance under off-design conditions for dual-pressure organic Rankine cycle with hot source splitting

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2025-01-23 DOI:10.1016/j.nexus.2025.100360
Shiqi Wang , Zhongyuan Yuan , Kim Tiow Ooi , Xiangyu Chang , Nanyang Yu
{"title":"Optimization of performance under off-design conditions for dual-pressure organic Rankine cycle with hot source splitting","authors":"Shiqi Wang ,&nbsp;Zhongyuan Yuan ,&nbsp;Kim Tiow Ooi ,&nbsp;Xiangyu Chang ,&nbsp;Nanyang Yu","doi":"10.1016/j.nexus.2025.100360","DOIUrl":null,"url":null,"abstract":"<div><div>The Dual-Pressure Organic Rankine Cycle system, integrated with Hot Source Splitting (DORC-HSS), demonstrates enhanced performance by optimizing heat matching. A primary challenge in deploying the DORC-HSS system lies in its off-design performance, particularly when faced with varying conditions of heat and cold sources. By using the first law of thermodynamics and the logarithmic mean temperature difference method, the MATLAB model of the system is established, and the net output power is optimized by particle swarm optimization. Our analysis reveals that in optimal off-design scenarios, the working fluid exits each loop preheater nearing a saturated liquid state. The increase in hot water flow rate leads to a decrease in the superheat degree in the high-pressure loop. Conversely, the working fluid at the expander inlet in the low-pressure loop consistently maintains a saturated vapor state. Furthermore, a 20.0% increase in optimal output power is observed for every 5 °C rise in hot water inlet temperature, and a 12.2% increase for every 20 kg/s increment in hot water flow rate. The highest thermal and exergy efficiencies achieved are 8.54% and 49.98%, respectively. A reduction of 1 °C in cooling water temperature corresponds to a 3.5% increase in output power. When the cooling water inlet temperature is 17 °C, the highest thermal and exergy efficiencies are 8.0% and 52.3%. The optimal hot water split ratio ranges from 67% to 79%. This optimization method can be used for any waste heat recovery system using DORC-HSS. Industries can approach control targets, ensuring the safe operation and translating into meaningful energy savings and lower operating costs. The economic benefits from such enhancements could shorten the payback period for DORC-HSS installations.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100360"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Dual-Pressure Organic Rankine Cycle system, integrated with Hot Source Splitting (DORC-HSS), demonstrates enhanced performance by optimizing heat matching. A primary challenge in deploying the DORC-HSS system lies in its off-design performance, particularly when faced with varying conditions of heat and cold sources. By using the first law of thermodynamics and the logarithmic mean temperature difference method, the MATLAB model of the system is established, and the net output power is optimized by particle swarm optimization. Our analysis reveals that in optimal off-design scenarios, the working fluid exits each loop preheater nearing a saturated liquid state. The increase in hot water flow rate leads to a decrease in the superheat degree in the high-pressure loop. Conversely, the working fluid at the expander inlet in the low-pressure loop consistently maintains a saturated vapor state. Furthermore, a 20.0% increase in optimal output power is observed for every 5 °C rise in hot water inlet temperature, and a 12.2% increase for every 20 kg/s increment in hot water flow rate. The highest thermal and exergy efficiencies achieved are 8.54% and 49.98%, respectively. A reduction of 1 °C in cooling water temperature corresponds to a 3.5% increase in output power. When the cooling water inlet temperature is 17 °C, the highest thermal and exergy efficiencies are 8.0% and 52.3%. The optimal hot water split ratio ranges from 67% to 79%. This optimization method can be used for any waste heat recovery system using DORC-HSS. Industries can approach control targets, ensuring the safe operation and translating into meaningful energy savings and lower operating costs. The economic benefits from such enhancements could shorten the payback period for DORC-HSS installations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Development of macro and micro-nutrient rich integrated Jeevamrutha bio-fertilizer systems using rural and commercial precursors Maintenance techniques to increase solar energy production: A review Comparative analysis of environmental impact and energy consumption in sesame and mung bean production using life cycle assessment and data envelopment analysis Enhancing sustainability through optimized adsorption using a novel Klason-lignin-based biosorbent derived from sugar-palm fruit shells for efficient removal of Pb(II) and Cd(II) Experimental and computational analyses of a photovoltaic module cooled with an optimized converging channel absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1