Interaction of molecular mechanisms of plant-derived metabolites in Type 2 diabetes mellitus: A network pharmacology, docking and molecular dynamics approach on AKT1 kinase

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2024-11-27 DOI:10.1016/j.nexus.2024.100351
Ekambaram Gayathiri , Palanisamy Prakash , Somdatta Y. Chaudhari , Sarvesh Sabarathinam , Subramanian Deepika Priyadharshini , Mohammad K. Al-Sadoon , Jithendra Panneerselvam , Soon Woong Chang , Balasubramani Ravindran , Ravishankar Ram Mani
{"title":"Interaction of molecular mechanisms of plant-derived metabolites in Type 2 diabetes mellitus: A network pharmacology, docking and molecular dynamics approach on AKT1 kinase","authors":"Ekambaram Gayathiri ,&nbsp;Palanisamy Prakash ,&nbsp;Somdatta Y. Chaudhari ,&nbsp;Sarvesh Sabarathinam ,&nbsp;Subramanian Deepika Priyadharshini ,&nbsp;Mohammad K. Al-Sadoon ,&nbsp;Jithendra Panneerselvam ,&nbsp;Soon Woong Chang ,&nbsp;Balasubramani Ravindran ,&nbsp;Ravishankar Ram Mani","doi":"10.1016/j.nexus.2024.100351","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>T2DM is a common metabolic disease with enormous effects on health worldwide; moreover, the use of phytochemicals as therapeutic compounds has drawn increasing attention. Therefore, the objective of this study was to assess the effectiveness of these phytochemicals in combating diabetes through a comprehensive evaluation of their interactions with biological networks through network pharmacology, molecular docking, and molecular dynamics simulations.</div></div><div><h3>Objectives</h3><div>The first goal of this study was to search and screen potential phytochemicals for binding with key proteins involved in T2DM, with special emphasis on AKT1 kinase, an integral component of the insulin signaling pathway.</div></div><div><h3>Methods</h3><div>Network pharmacology analysis was carried out, and the interaction network of targets associated with T2DM was generated using KEGG, STRING and Cytoscape 3.9.1 software's. To determine the specific metabolic processes, cellular compartments, and molecular functions involved in T2DM, we performed Gene Ontology and KEGG analyses. An initial and short molecular docking study was conducted to analyze the binding modes, while the molecular dynamics simulations provided insights into the binding energy and stability of phytochemicals at target sites, with emphasis on rutin engaged with AKT1.</div></div><div><h3>Results</h3><div>In total, 10 hub genes were proposed to be involved in T2DM and can be considered candidate therapeutic targets, namely MTOR, CASP3, CCND1, TNF, MMP9, ALB, MDM2, AKT1, and HSP90AA1. Rutin was found to have the highest binding score for AKT1 in docking studies, while MD simulations identified the structural stability and persistence of the compound's activity at the target enzyme loci.</div></div><div><h3>Conclusions</h3><div>This study identified rutin and flavonoids as potential anti-diabetes phytochemicals. Based on these observations, an opportunity for other in vitro experiments and additional in vivo studies to confirm these buildings as multi-target drugs in T2DM patients is provided.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100351"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

T2DM is a common metabolic disease with enormous effects on health worldwide; moreover, the use of phytochemicals as therapeutic compounds has drawn increasing attention. Therefore, the objective of this study was to assess the effectiveness of these phytochemicals in combating diabetes through a comprehensive evaluation of their interactions with biological networks through network pharmacology, molecular docking, and molecular dynamics simulations.

Objectives

The first goal of this study was to search and screen potential phytochemicals for binding with key proteins involved in T2DM, with special emphasis on AKT1 kinase, an integral component of the insulin signaling pathway.

Methods

Network pharmacology analysis was carried out, and the interaction network of targets associated with T2DM was generated using KEGG, STRING and Cytoscape 3.9.1 software's. To determine the specific metabolic processes, cellular compartments, and molecular functions involved in T2DM, we performed Gene Ontology and KEGG analyses. An initial and short molecular docking study was conducted to analyze the binding modes, while the molecular dynamics simulations provided insights into the binding energy and stability of phytochemicals at target sites, with emphasis on rutin engaged with AKT1.

Results

In total, 10 hub genes were proposed to be involved in T2DM and can be considered candidate therapeutic targets, namely MTOR, CASP3, CCND1, TNF, MMP9, ALB, MDM2, AKT1, and HSP90AA1. Rutin was found to have the highest binding score for AKT1 in docking studies, while MD simulations identified the structural stability and persistence of the compound's activity at the target enzyme loci.

Conclusions

This study identified rutin and flavonoids as potential anti-diabetes phytochemicals. Based on these observations, an opportunity for other in vitro experiments and additional in vivo studies to confirm these buildings as multi-target drugs in T2DM patients is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Development of macro and micro-nutrient rich integrated Jeevamrutha bio-fertilizer systems using rural and commercial precursors Maintenance techniques to increase solar energy production: A review Comparative analysis of environmental impact and energy consumption in sesame and mung bean production using life cycle assessment and data envelopment analysis Enhancing sustainability through optimized adsorption using a novel Klason-lignin-based biosorbent derived from sugar-palm fruit shells for efficient removal of Pb(II) and Cd(II) Experimental and computational analyses of a photovoltaic module cooled with an optimized converging channel absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1