"Enhancing structural and optical properties of CuO thin films through gallium doping: A pathway to enhanced photoluminescence and predict for solar cells applications"

IF 4.3 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2025-01-21 DOI:10.1016/j.chphi.2025.100832
Sinovuyo Siyalo, Habtamu Fekadu Etefa, Francis Birhanu Dejene
{"title":"\"Enhancing structural and optical properties of CuO thin films through gallium doping: A pathway to enhanced photoluminescence and predict for solar cells applications\"","authors":"Sinovuyo Siyalo,&nbsp;Habtamu Fekadu Etefa,&nbsp;Francis Birhanu Dejene","doi":"10.1016/j.chphi.2025.100832","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the transformative impact of gallium (Ga) doping on the structural and optical properties of copper oxide (CuO) thin films synthesized via chemical bath deposition (CBD) to Enhanced Photoluminescence. Structural analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that moderate Ga doping significantly enhanced crystallinity, improved grain connectivity, and minimized defects. However, excessive doping levels led to phase segregation and structural inconsistencies. The crystalline size (D) was meticulously analyzed using Williamson-Hall (W-H) and Scherrer methods based on XRD data. Optical characterization through UV–Vis spectroscopy demonstrated a remarkable redshift in the absorption edge, attributed to Ga-induced bandgap modifications at the optimal doping concentration of 0.4 M decreased from 2.60 eV to 1.95 eV This modification notably enhanced the material's light-harvesting capabilities, making it more effective for photovoltaic applications. Fourier-transform infrared (FTIR) spectroscopy highlighted distinct Cu-O vibrations and notable changes in hydroxyl and C<img>O bonding, signifying alterations in surface chemistry and bonding structures. These structural and chemical modifications contribute to the material's enhanced performance. Photoluminescence (PL) analysis revealed a pronounced green emission at 530 nm under 0.4 M Ga doping, linked to changes in radiative and non-radiative recombination processes. Indeed, Ga doping enhances the structural and optical properties of CuO thin films, including tailored bandgap energy, improved crystallinity, and superior optical absorption. These improvements make Ga-doped CuO thin films promising to predict solar cells and photocatalytic applications technologies, boosting the efficiency of photovoltaic and photoluminescence systems.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100832"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the transformative impact of gallium (Ga) doping on the structural and optical properties of copper oxide (CuO) thin films synthesized via chemical bath deposition (CBD) to Enhanced Photoluminescence. Structural analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that moderate Ga doping significantly enhanced crystallinity, improved grain connectivity, and minimized defects. However, excessive doping levels led to phase segregation and structural inconsistencies. The crystalline size (D) was meticulously analyzed using Williamson-Hall (W-H) and Scherrer methods based on XRD data. Optical characterization through UV–Vis spectroscopy demonstrated a remarkable redshift in the absorption edge, attributed to Ga-induced bandgap modifications at the optimal doping concentration of 0.4 M decreased from 2.60 eV to 1.95 eV This modification notably enhanced the material's light-harvesting capabilities, making it more effective for photovoltaic applications. Fourier-transform infrared (FTIR) spectroscopy highlighted distinct Cu-O vibrations and notable changes in hydroxyl and CO bonding, signifying alterations in surface chemistry and bonding structures. These structural and chemical modifications contribute to the material's enhanced performance. Photoluminescence (PL) analysis revealed a pronounced green emission at 530 nm under 0.4 M Ga doping, linked to changes in radiative and non-radiative recombination processes. Indeed, Ga doping enhances the structural and optical properties of CuO thin films, including tailored bandgap energy, improved crystallinity, and superior optical absorption. These improvements make Ga-doped CuO thin films promising to predict solar cells and photocatalytic applications technologies, boosting the efficiency of photovoltaic and photoluminescence systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“通过镓掺杂增强CuO薄膜的结构和光学性能:增强光致发光的途径和对太阳能电池应用的预测”
本研究探讨了镓(Ga)掺杂对化学浴沉积(CBD)合成的氧化铜(CuO)薄膜结构和光学性能的变换器影响,以增强光致发光。利用x射线衍射(XRD)和扫描电镜(SEM)对材料进行结构分析,结果表明,适量的Ga掺杂能显著提高材料的结晶度,改善晶粒连通性,减少缺陷。然而,过量的掺杂会导致相偏析和结构不一致。基于XRD数据,采用Williamson-Hall (W-H)和Scherrer方法对晶体尺寸(D)进行了细致的分析。通过紫外可见光谱进行的光学表征表明,在最佳掺杂浓度为0.4 M时,由于ga诱导的带隙修饰,吸收边出现了显著的红移,从2.60 eV降至1.95 eV,这种修饰显著增强了材料的光捕获能力,使其更有效地用于光伏应用。傅里叶变换红外光谱(FTIR)显示出明显的Cu-O振动和羟基和CO键的显著变化,表明表面化学和键结构发生了变化。这些结构和化学修饰有助于提高材料的性能。光致发光(PL)分析显示,在0.4 M Ga掺杂下,在530 nm处有明显的绿色发射,这与辐射和非辐射复合过程的变化有关。事实上,Ga掺杂提高了CuO薄膜的结构和光学性能,包括定制的带隙能量,改善的结晶度和优越的光学吸收。这些改进使得ga掺杂CuO薄膜有望预测太阳能电池和光催化应用技术,提高光伏和光致发光系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Physics-informed machine learning prediction of char mass evolution in the catalytic pyrolysis of polyetherimide/graphite nanocomposites In Silico Design of Isoindolinone-Hydrazide Hybrid Compounds as Antiplasmodium Through Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA Calculation Artificial Intelligence-Based Applications in Perovskite Photovoltaic Cells Exploring the Role of Metal Oxide Heterostructures for Next-Generation Gas Sensors: A Focus on NH3, H2S and NO2 gases Electron–phonon coupling strength in hydrogen-bonded network crystals in the THz frequency range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1