Thermo-mechanical decolourization process for shrimp chitin (Pandalus borealis)

Julia Pohling , Kelly Hawboldt , Deepika Dave
{"title":"Thermo-mechanical decolourization process for shrimp chitin (Pandalus borealis)","authors":"Julia Pohling ,&nbsp;Kelly Hawboldt ,&nbsp;Deepika Dave","doi":"10.1016/j.scenv.2024.100192","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pandalus borealis</em> is a thin-shelled shrimp species with medium pigmentation. The polysaccharide chitin, which makes up approximately 20 % of the shell, can be extracted and used in many different industries. The main extraction steps are deproteination and demineralization, followed by an assessment of the colour. White, off-white, or beige chitin is desired for most industrial applications. If required, residual pigmentation is typically removed in a decolourization step (DC) using oxidizing reagents or solvents. Disadvantages include safety and environmental concerns, unspecific oxidation reactions and high volatility of reagents. To date, a green process alternative is not documented. <em>P. borealis</em> chitin, deproteinated in alkali solution, does not require further DC. Enzymatic deproteination is nowadays preferred in the interest of sustainable processing, but it produces chitin with inferior colour quality. Based on the known thermal instability of the shrimp pigments and the porosity of chitin particles, the present study hypothesizes that the colour quality of enzymatically purified chitin can be enhanced by a washing process using high-shear and hot water. We develop a novel, chemical-free alternative for decolourization and assess its effectiveness compared to solvent and oxidizing reagents. Chitin properties are assessed by colorimetry, XRD, NMR, TGA, bulk density, and fat/water-binding capacities (FBC/WBC). Our findings suggest that the innovative thermo-mechanical DC process can produce a colour quality comparable to solvent DC without resulting in deacetylation, changes in crystallinity, or thermal stability. Thermo-mechanical DC enhanced WBC/FBC of chitin, which is an important property in hydrogel and drug delivery applications.</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"9 ","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839224001354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pandalus borealis is a thin-shelled shrimp species with medium pigmentation. The polysaccharide chitin, which makes up approximately 20 % of the shell, can be extracted and used in many different industries. The main extraction steps are deproteination and demineralization, followed by an assessment of the colour. White, off-white, or beige chitin is desired for most industrial applications. If required, residual pigmentation is typically removed in a decolourization step (DC) using oxidizing reagents or solvents. Disadvantages include safety and environmental concerns, unspecific oxidation reactions and high volatility of reagents. To date, a green process alternative is not documented. P. borealis chitin, deproteinated in alkali solution, does not require further DC. Enzymatic deproteination is nowadays preferred in the interest of sustainable processing, but it produces chitin with inferior colour quality. Based on the known thermal instability of the shrimp pigments and the porosity of chitin particles, the present study hypothesizes that the colour quality of enzymatically purified chitin can be enhanced by a washing process using high-shear and hot water. We develop a novel, chemical-free alternative for decolourization and assess its effectiveness compared to solvent and oxidizing reagents. Chitin properties are assessed by colorimetry, XRD, NMR, TGA, bulk density, and fat/water-binding capacities (FBC/WBC). Our findings suggest that the innovative thermo-mechanical DC process can produce a colour quality comparable to solvent DC without resulting in deacetylation, changes in crystallinity, or thermal stability. Thermo-mechanical DC enhanced WBC/FBC of chitin, which is an important property in hydrogel and drug delivery applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Functionalization of Eri silk and its union fabric using methanolic extract of Centella asiatica plant against Staphylococcus aureus Synergistic effect of pre-treatment and microwave drying on the physicochemical and functional properties of Chausa mango peel: Process optimization and HPLC analysis to identify mangiferin Enhancing the oxidative cleavage of vicinal diols on Fe-ZSM-5 catalysts with hierarchical porosity Advancements in polypropylene biodegradation: A comprehensive microbial and analytical review Characterization of BTEX species at Texas Commission on Environmental Quality (TCEQ) Continuous Ambient Monitoring Station (CAMS) sites in Houston, Texas, USA during 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1