Wellington Kanyongo , Absalom E. Ezugwu , Tsitsi Moyo , Jean Vincent Fonou Dombeu
{"title":"Machine learning-based classification of medication adherence among patients with noncommunicable diseases","authors":"Wellington Kanyongo , Absalom E. Ezugwu , Tsitsi Moyo , Jean Vincent Fonou Dombeu","doi":"10.1016/j.imu.2024.101611","DOIUrl":null,"url":null,"abstract":"<div><div>Non-adherence to medication among individuals with non-communicable diseases (NCDs) leads to increased morbidity, mortality, and healthcare costs. The integration of electronic drug prescription and dispensation systems enables comprehensive analysis of medication adherence (MA). Patient-level and medical claims data for 8141 diabetic and hypertensive patients in Harare, Zimbabwe, were analysed. Non-adherence was defined as medication refills falling below 75 % of the intended 12 monthly claims, while adherence required at least 75 % of the refills. Classification employed multiple machine learning algorithms, including SVM, KNN, DT, Naïve Bayes, DNN, LR, and RF in Python 3.11.3. Significant variables for MA were identified through the Random Forest (RF) feature importance mechanism and the information gain technique. These included the annual quantity of medical supplies, annual claim amount, patient age, wellness program subscription, medical aid cover, contribution towards medical aid cover, comorbidity, diagnosis, hospital cover type, complications development, gender, and medical aid scheme. The total units of medical supplies dispensed annually emerged as the most significant predictor of MA. Considering the 8-feature subset, which consistently produced the most robust machine learning models, the classification accuracy of the ML classifiers ranged from 84.9 % to 88.2 %, while the AUC values varied between 0.857 and 0.934. RF, an ensemble learning technique, was the most robust classifier, achieving 88.2 % accuracy, an AUC of 0.935, and superior precision, recall, and F1-score. This model shows promise as a prognostic tool for enhancing MA, aiding in identifying adherence levels among patients. These findings contribute to addressing disparities in medication refilling and adherence rates among patients with NCDs. The ML model holds potential for the development of intelligent MA and intervention applications to improve patient adherence to medication in the chronic disease domain.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"52 ","pages":"Article 101611"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824001680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Non-adherence to medication among individuals with non-communicable diseases (NCDs) leads to increased morbidity, mortality, and healthcare costs. The integration of electronic drug prescription and dispensation systems enables comprehensive analysis of medication adherence (MA). Patient-level and medical claims data for 8141 diabetic and hypertensive patients in Harare, Zimbabwe, were analysed. Non-adherence was defined as medication refills falling below 75 % of the intended 12 monthly claims, while adherence required at least 75 % of the refills. Classification employed multiple machine learning algorithms, including SVM, KNN, DT, Naïve Bayes, DNN, LR, and RF in Python 3.11.3. Significant variables for MA were identified through the Random Forest (RF) feature importance mechanism and the information gain technique. These included the annual quantity of medical supplies, annual claim amount, patient age, wellness program subscription, medical aid cover, contribution towards medical aid cover, comorbidity, diagnosis, hospital cover type, complications development, gender, and medical aid scheme. The total units of medical supplies dispensed annually emerged as the most significant predictor of MA. Considering the 8-feature subset, which consistently produced the most robust machine learning models, the classification accuracy of the ML classifiers ranged from 84.9 % to 88.2 %, while the AUC values varied between 0.857 and 0.934. RF, an ensemble learning technique, was the most robust classifier, achieving 88.2 % accuracy, an AUC of 0.935, and superior precision, recall, and F1-score. This model shows promise as a prognostic tool for enhancing MA, aiding in identifying adherence levels among patients. These findings contribute to addressing disparities in medication refilling and adherence rates among patients with NCDs. The ML model holds potential for the development of intelligent MA and intervention applications to improve patient adherence to medication in the chronic disease domain.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.