Pine seedlings select a consistent ectomycorrhizal community regardless of water availability and inoculum origin

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2024-12-23 DOI:10.1016/j.funeco.2024.101406
Lior Herol , Tamir Klein , Stav Livne-Luzon , Hagai Shemesh
{"title":"Pine seedlings select a consistent ectomycorrhizal community regardless of water availability and inoculum origin","authors":"Lior Herol ,&nbsp;Tamir Klein ,&nbsp;Stav Livne-Luzon ,&nbsp;Hagai Shemesh","doi":"10.1016/j.funeco.2024.101406","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of water stress on mutualistic interactions can play a key role in forest response to drought. We tested the effects of water availability on the mutualism between Aleppo pine seedlings and ectomycorrhizal fungi (EMF) originating from soil spore banks of pine forests along a steep climatic gradient. The composition of the EMF communities in the soil varied along the climatic gradient, whereas the communities on pine seedlings' roots which were inoculated with these soil spore banks remained largely consistent. Water stress reduced seedling growth, which was influenced by EMF presence and not by inoculum origin. These results suggest that even under water shortage, pine seedlings maintain similar partnerships despite variable EMF availability. This raises important questions regarding the role of EMF richness at different stages of tree growth and at different ecological scales and improves our understanding of forest regeneration dynamics under extreme climatic conditions.</div></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"74 ","pages":"Article 101406"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000771","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of water stress on mutualistic interactions can play a key role in forest response to drought. We tested the effects of water availability on the mutualism between Aleppo pine seedlings and ectomycorrhizal fungi (EMF) originating from soil spore banks of pine forests along a steep climatic gradient. The composition of the EMF communities in the soil varied along the climatic gradient, whereas the communities on pine seedlings' roots which were inoculated with these soil spore banks remained largely consistent. Water stress reduced seedling growth, which was influenced by EMF presence and not by inoculum origin. These results suggest that even under water shortage, pine seedlings maintain similar partnerships despite variable EMF availability. This raises important questions regarding the role of EMF richness at different stages of tree growth and at different ecological scales and improves our understanding of forest regeneration dynamics under extreme climatic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
Strong climatic effects on ectomycorrhizal fungal communities at seedling establishment stage in ice-age relict forests Secondary metabolites and their impact on symbiotic interactions in the ambrosia fungus Geosmithia eupagioceri Fungi in treeline ecotones – Halting or causing abrupt ecosystem change? Editorial Board Volatilome of Australian Ips grandicollis-associated ophiostomatoid fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1