Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2025-02-01 DOI:10.1016/j.addlet.2024.100264
Dagoberto Torres-Alvarez, Angel Celis-Guzman, Alan Aguirre-Soto
{"title":"Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy","authors":"Dagoberto Torres-Alvarez,&nbsp;Angel Celis-Guzman,&nbsp;Alan Aguirre-Soto","doi":"10.1016/j.addlet.2024.100264","DOIUrl":null,"url":null,"abstract":"<div><div>The degree of mechanical anisotropy in objects printed with laser vat photopolymerization (VPP) remains controversial. It has been stated that objects with a higher degree of mechanical isotropy are produced with VPP as compared to other polymer-based additive manufacturing techniques, such as fused filament fabrication (FFF). However, reports on the evaluation of resin-dependency of the mechanical anisotropy obtained with VPP are scarce. Furthermore, the degree of anisotropy (DA) was quantified using different procedures. Here, six commercial resins were selected to evaluate how the DA correlates to the initial rate of polymerization (R<sub>P0</sub>), critical energy (E<sub>C</sub>), and penetration depth (D<sub>P</sub>) for materials with a broader range of properties. State-of-the-art procedures to calculate the degree of mechanical anisotropy are discussed, and an ideal method is proposed, namely, the ratio of the standard deviations related to the inter- and intra-layer forces: DA=(sd<sub>inter</sub>/sd<sub>intra</sub>). The elastic modulus (<em>E</em>) was confirmed isotropic with the three resins that were previously reported. However, objects printed with the additional resins that polymerize at higher initial rates (R<sub>P0</sub> =72.1 mM/s) and with lower critical energies (E<sub>C</sub> = 0.36 mJ/cm<sup>2</sup>) appear more anisotropic. A linear trend was obtained for the scaling of the mechanical DA with R<sub>P0</sub>. Moreover, a logarithmic correlation between E<sub>C</sub> and the DA in <em>E</em> was found, which appears inappropriate for E<sub>C</sub> as a function of the DA in the maximum stress (σ<sub>Max</sub>). This study aims to spur research on the mechanisms underlying the dependence of the mechanical DA on the resin-curing behavior for objects fabricated by VPP.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"12 ","pages":"Article 100264"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The degree of mechanical anisotropy in objects printed with laser vat photopolymerization (VPP) remains controversial. It has been stated that objects with a higher degree of mechanical isotropy are produced with VPP as compared to other polymer-based additive manufacturing techniques, such as fused filament fabrication (FFF). However, reports on the evaluation of resin-dependency of the mechanical anisotropy obtained with VPP are scarce. Furthermore, the degree of anisotropy (DA) was quantified using different procedures. Here, six commercial resins were selected to evaluate how the DA correlates to the initial rate of polymerization (RP0), critical energy (EC), and penetration depth (DP) for materials with a broader range of properties. State-of-the-art procedures to calculate the degree of mechanical anisotropy are discussed, and an ideal method is proposed, namely, the ratio of the standard deviations related to the inter- and intra-layer forces: DA=(sdinter/sdintra). The elastic modulus (E) was confirmed isotropic with the three resins that were previously reported. However, objects printed with the additional resins that polymerize at higher initial rates (RP0 =72.1 mM/s) and with lower critical energies (EC = 0.36 mJ/cm2) appear more anisotropic. A linear trend was obtained for the scaling of the mechanical DA with RP0. Moreover, a logarithmic correlation between EC and the DA in E was found, which appears inappropriate for EC as a function of the DA in the maximum stress (σMax). This study aims to spur research on the mechanisms underlying the dependence of the mechanical DA on the resin-curing behavior for objects fabricated by VPP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Impact of a typical scanner delay processing parameter on local microstructure in metallic laser-based powder bed fusion Liquid-induced heat treatment strategy for eliminating anisotropy of IN718 fabricated by laser powder bed fusion Comparative analysis of machining and electropolishing for surface quality improvement of shape memory nitinol samples additively manufactured by laser powder bed fusion Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy Micro-X-ray-CT for analysis of particle size segregation during powder spreading in Binder Jet Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1