Veronica A. Rosero-Morillo , F. Gonzalez-Longatt , Juan C. Quispe , Eduardo J. Salazar , Eduardo Orduña , Mauricio E. Samper
{"title":"Emerging Trends in Active Distribution Network Fault Detection","authors":"Veronica A. Rosero-Morillo , F. Gonzalez-Longatt , Juan C. Quispe , Eduardo J. Salazar , Eduardo Orduña , Mauricio E. Samper","doi":"10.1016/j.ref.2025.100684","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical systems are constantly transforming to achieve global decarbonization and address the climate emergency. This process involves a substantial modernization of the distribution network that includes the integration of distributed energy resources, particularly those using inverter interfaces. Given the inevitability of faults, it is crucial to strengthen the infrastructure of protection systems so they can handle the new challenges imposed by this evolution. This article explores the challenges associated with protecting active distribution networks, caused by the incorporation of technologies such as rotary machines and power electronic converters. Special attention is given to critical issues such as changes in short-circuit currents, the bidirectional flow of currents, and the response times of protection relays. Current practical solutions are examined, and their limitations identified, highlighting the urgent need to develop more sophisticated and tailored protection schemes for the particularities of these networks. Additionally, the fault detection process is described in detail, breaking down the stages of parameter acquisition, signal processing, and fault classification, based on recent research. Finally, future trends in protection schemes are discussed, emphasizing the importance of continuously adapting and optimizing protection strategies in response to the dynamic evolution of electrical networks.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100684"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical systems are constantly transforming to achieve global decarbonization and address the climate emergency. This process involves a substantial modernization of the distribution network that includes the integration of distributed energy resources, particularly those using inverter interfaces. Given the inevitability of faults, it is crucial to strengthen the infrastructure of protection systems so they can handle the new challenges imposed by this evolution. This article explores the challenges associated with protecting active distribution networks, caused by the incorporation of technologies such as rotary machines and power electronic converters. Special attention is given to critical issues such as changes in short-circuit currents, the bidirectional flow of currents, and the response times of protection relays. Current practical solutions are examined, and their limitations identified, highlighting the urgent need to develop more sophisticated and tailored protection schemes for the particularities of these networks. Additionally, the fault detection process is described in detail, breaking down the stages of parameter acquisition, signal processing, and fault classification, based on recent research. Finally, future trends in protection schemes are discussed, emphasizing the importance of continuously adapting and optimizing protection strategies in response to the dynamic evolution of electrical networks.