Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education

IF 3.8 1区 心理学 Q1 PSYCHOLOGY, EDUCATIONAL Learning and Individual Differences Pub Date : 2025-02-01 DOI:10.1016/j.lindif.2024.102601
Arne Bewersdorff , Christian Hartmann , Marie Hornberger , Kathrin Seßler , Maria Bannert , Enkelejda Kasneci , Gjergji Kasneci , Xiaoming Zhai , Claudia Nerdel
{"title":"Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education","authors":"Arne Bewersdorff ,&nbsp;Christian Hartmann ,&nbsp;Marie Hornberger ,&nbsp;Kathrin Seßler ,&nbsp;Maria Bannert ,&nbsp;Enkelejda Kasneci ,&nbsp;Gjergji Kasneci ,&nbsp;Xiaoming Zhai ,&nbsp;Claudia Nerdel","doi":"10.1016/j.lindif.2024.102601","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of Artificial Intelligence (AI), particularly Large Language Model (LLM)-based systems, in education has shown promise in enhancing teaching and learning experiences. However, the advent of Multimodal Large Language Models (MLLMs) like GPT-4 Vision, capable of processing multimodal data including text, sound, and visual inputs, opens a new era of enriched, personalized, and interactive learning landscapes in education. This paper derives a theoretical framework for integrating MLLMs into multimodal learning. This framework serves to explore the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios. Possible applications for MLLMs range from content creation to tailored support for learning, fostering engagement in scientific practices, and providing assessments and feedback. These applications are not limited to text-based and uni-modal formats but can be multimodal, thus increasing personalization, accessibility, and potential learning effectiveness. Despite the many opportunities, challenges such as data protection and ethical considerations become salient, calling for robust frameworks to ensure responsible integration. This paper underscores the necessity for a balanced approach in implementing MLLMs, where the technology complements rather than supplants the educators' roles, ensuring an effective and ethical use of AI in science education. It calls for further research to explore the nuanced implications of MLLMs for educators and to extend the discourse beyond science education to other disciplines. Through developing a theoretical framework for the integration of MLLMs into multimodal learning and exploring the associated potentials, challenges, and future implications, this paper contributes to a preliminary examination of the transformative role of MLLMs in science education and beyond.</div></div>","PeriodicalId":48336,"journal":{"name":"Learning and Individual Differences","volume":"118 ","pages":"Article 102601"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Individual Differences","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1041608024001948","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EDUCATIONAL","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Artificial Intelligence (AI), particularly Large Language Model (LLM)-based systems, in education has shown promise in enhancing teaching and learning experiences. However, the advent of Multimodal Large Language Models (MLLMs) like GPT-4 Vision, capable of processing multimodal data including text, sound, and visual inputs, opens a new era of enriched, personalized, and interactive learning landscapes in education. This paper derives a theoretical framework for integrating MLLMs into multimodal learning. This framework serves to explore the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios. Possible applications for MLLMs range from content creation to tailored support for learning, fostering engagement in scientific practices, and providing assessments and feedback. These applications are not limited to text-based and uni-modal formats but can be multimodal, thus increasing personalization, accessibility, and potential learning effectiveness. Despite the many opportunities, challenges such as data protection and ethical considerations become salient, calling for robust frameworks to ensure responsible integration. This paper underscores the necessity for a balanced approach in implementing MLLMs, where the technology complements rather than supplants the educators' roles, ensuring an effective and ethical use of AI in science education. It calls for further research to explore the nuanced implications of MLLMs for educators and to extend the discourse beyond science education to other disciplines. Through developing a theoretical framework for the integration of MLLMs into multimodal learning and exploring the associated potentials, challenges, and future implications, this paper contributes to a preliminary examination of the transformative role of MLLMs in science education and beyond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Learning and Individual Differences
Learning and Individual Differences PSYCHOLOGY, EDUCATIONAL-
CiteScore
6.60
自引率
2.80%
发文量
86
期刊介绍: Learning and Individual Differences is a research journal devoted to publishing articles of individual differences as they relate to learning within an educational context. The Journal focuses on original empirical studies of high theoretical and methodological rigor that that make a substantial scientific contribution. Learning and Individual Differences publishes original research. Manuscripts should be no longer than 7500 words of primary text (not including tables, figures, references).
期刊最新文献
Directional or reciprocal? A random intercept cross-lagged panel analysis of the relationships between emotions, motivation, willingness to communicate, and L2 achievement Memorizing plans with an app: Large individual differences in the effectiveness of retrieval-based and generative learning activities in a naturalistic context Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education A scoping review of research on individual differences in the testing effect paradigm Stability of early number sense competencies for predicting mathematics difficulties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1