Structural-weakening mapping to seismic-like slip avalanches in bulk-metallic glasses

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-01-29 DOI:10.1016/j.intermet.2025.108674
Jiaojiao Li , Junwei Qiao , Yong Liu , Yunzhi Ma , Xijing Zhu , Junyuan Wang , Zhiqiang Zeng , Linzheng Ye , Huihu Lu , Karin A. Dahmen , Peter K. Liaw
{"title":"Structural-weakening mapping to seismic-like slip avalanches in bulk-metallic glasses","authors":"Jiaojiao Li ,&nbsp;Junwei Qiao ,&nbsp;Yong Liu ,&nbsp;Yunzhi Ma ,&nbsp;Xijing Zhu ,&nbsp;Junyuan Wang ,&nbsp;Zhiqiang Zeng ,&nbsp;Linzheng Ye ,&nbsp;Huihu Lu ,&nbsp;Karin A. Dahmen ,&nbsp;Peter K. Liaw","doi":"10.1016/j.intermet.2025.108674","DOIUrl":null,"url":null,"abstract":"<div><div>“Smaller is softer” mainly refers to the reverse size dependence of plasticity for bulk-metallic glasses (BMGs). Here, we report experimental results showing that “flatter acts more ductile”. Specifically, by choosing low aspect ratios for the samples, like 1:2, in compression experiments it is possible to eliminate catastrophically large (system-spanning) slips that are often seen for BMG samples with large aspect ratios of 3:1, 2:1, and 1:1. Moreover, for BMG samples with an aspect ratio of 1:2, multiple parallel shear bands produce self-similar slip avalanches, whose size distribution follows the stress-integrated power-law exponent of around 1.0. This exponent value, agrees with the prediction of mean field theory for a near-zero structural-weakening factor, modeling ductile behavior. The absence of structural weakening for the aspect ratio of 1:2 suggests that this aspect ratio may be preferable for some applications where large slips are undesirable because they lead to jerky deformation behavior and are difficult to control.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"179 ","pages":"Article 108674"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000391","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

“Smaller is softer” mainly refers to the reverse size dependence of plasticity for bulk-metallic glasses (BMGs). Here, we report experimental results showing that “flatter acts more ductile”. Specifically, by choosing low aspect ratios for the samples, like 1:2, in compression experiments it is possible to eliminate catastrophically large (system-spanning) slips that are often seen for BMG samples with large aspect ratios of 3:1, 2:1, and 1:1. Moreover, for BMG samples with an aspect ratio of 1:2, multiple parallel shear bands produce self-similar slip avalanches, whose size distribution follows the stress-integrated power-law exponent of around 1.0. This exponent value, agrees with the prediction of mean field theory for a near-zero structural-weakening factor, modeling ductile behavior. The absence of structural weakening for the aspect ratio of 1:2 suggests that this aspect ratio may be preferable for some applications where large slips are undesirable because they lead to jerky deformation behavior and are difficult to control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构削弱映射到块状金属玻璃中的地震样滑移雪崩
“越小越软”主要是指大块金属玻璃塑性的尺寸反向依赖关系。在这里,我们报告了实验结果,表明“更平坦的行为更具延展性”。具体来说,在压缩实验中,通过选择低纵横比(如1:2)的样本,可以消除灾难性的大(跨越系统的)滑移,这种滑移在具有3:1、2:1和1:1的大纵横比的BMG样本中经常出现。对于长径比为1:2的BMG试样,多个平行剪切带产生自相似滑移雪崩,滑移雪崩的尺寸分布遵循应力积分幂律指数1.0左右。该指数值与平均场理论对接近于零的结构弱化因子的预测一致,模拟了延性行为。长径比为1:2时没有结构弱化,这表明该长径比可能更适合一些不希望出现大滑移的应用,因为它们会导致突然变形行为并且难以控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Effects of palladium substitution on structural evolution and electrochemical properties of BCC solid solution alloys coexisting with Laves phase Influence of Al and Ti on precipitation behavior and corrosion resistance in CoCrNi alloys Divergent machinability and deformation mechanisms in directed energy deposited CrCoNi and (CrCoNi)94Al3Ti3 medium-entropy alloys Mechanistic insights into direction-modulated electromigration failures and intermetallic formation in symmetric/asymmetric SnAg solder microbumps Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1