A new era in catalysis: Combining Al, DFT, single atom catalysis, and comprehensive characterizations applied to catalytic oxidation of C1-C4 volatile organic compounds
{"title":"A new era in catalysis: Combining Al, DFT, single atom catalysis, and comprehensive characterizations applied to catalytic oxidation of C1-C4 volatile organic compounds","authors":"Suryamol Nambyaruveettil, Labeeb Ali, Mohammednoor Altarawneh","doi":"10.1016/j.jece.2024.115282","DOIUrl":null,"url":null,"abstract":"<div><div>This review paper explores cutting-edge approaches in the catalytic oxidation of C<sub>1</sub>-C<sub>4</sub> volatile organic compounds (VOCs), a critical area for environmental protection and industrial processes. The paper examines recent advancements in catalyst design methodologies, emphasizing the crucial relationship between molecular-level engineering and macroscopic material properties. Emerging materials and structures that show promise in enhancing catalytic performance are highlighted, including novel metal-organic frameworks (MOF), hierarchical porous materials, and single-atom catalysts. The growing role of computational techniques in predicting and optimizing catalyst behavior is explored, from density functional theory calculations to machine learning approach. Additionally, the review discusses how innovative characterization methods, such as <em>in situ</em> spectroscopy and advanced microscopy techniques, are driving catalyst development by providing unprecedented insights into reaction mechanisms and active site structures. This comprehensive review aims to provide researchers and industry professionals with a thorough understanding of the current state and future directions in catalytic oxidation of light VOCs, paving the way for more efficient and sustainable catalytic systems.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 1","pages":"Article 115282"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724034146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review paper explores cutting-edge approaches in the catalytic oxidation of C1-C4 volatile organic compounds (VOCs), a critical area for environmental protection and industrial processes. The paper examines recent advancements in catalyst design methodologies, emphasizing the crucial relationship between molecular-level engineering and macroscopic material properties. Emerging materials and structures that show promise in enhancing catalytic performance are highlighted, including novel metal-organic frameworks (MOF), hierarchical porous materials, and single-atom catalysts. The growing role of computational techniques in predicting and optimizing catalyst behavior is explored, from density functional theory calculations to machine learning approach. Additionally, the review discusses how innovative characterization methods, such as in situ spectroscopy and advanced microscopy techniques, are driving catalyst development by providing unprecedented insights into reaction mechanisms and active site structures. This comprehensive review aims to provide researchers and industry professionals with a thorough understanding of the current state and future directions in catalytic oxidation of light VOCs, paving the way for more efficient and sustainable catalytic systems.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.