Dmitriy I. Shlimas , Daryn B. Borgekov , Artem L. Kozlovskiy
{"title":"Application of EPR spectroscopy method for comparative analysis of structural damage accumulation kinetics in two-phase lithium-containing ceramics","authors":"Dmitriy I. Shlimas , Daryn B. Borgekov , Artem L. Kozlovskiy","doi":"10.1016/j.omx.2024.100387","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to determine the differences in the damaged layer degradation kinetics in two-phase lithium-containing ceramics based on Li<sub>2</sub>ZrO<sub>3</sub> and Li<sub>4</sub>SiO<sub>4</sub> compounds in the case of irradiation with protons and helium ions, simulating the gas swelling and blistering processes, as well as the accumulation of radiolysis products in the damaged layer. During the conducted studies it was established that in the case of proton irradiation, the dominant role at fluences of 10<sup>15</sup>–10<sup>17</sup> cm<sup>−2</sup> is played by oxygen vacancies, the change in the concentration of which upon reaching critical values causes a decrease in the thermophysical properties, and disordering of the damaged layer. In this case, the accumulation of radiolysis products in the form of HC<sub>2</sub> – and Zr<sup>3+</sup> -defects in the structure of the damaged layer is observed at fluences of 5 × 10<sup>17</sup> cm<sup>−2</sup>, while when irradiated with He<sup>2+</sup> ions, the formation of these types of HC<sub>2</sub> – and Zr<sup>3+</sup> -defects is observed at a fluence of 10<sup>17</sup> cm<sup>−2</sup>. Comparison of the concentration dependences of defects in the damaged layer on the atomic displacement value under irradiation with protons and He<sup>2+</sup> ions revealed that the formation of oxygen vacancies under irradiation with He<sup>2+</sup> ions is more intense than in the case of irradiation with protons, which in turn results in more pronounced processes of accumulation of radiolysis products in the case of high-dose irradiation.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100387"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to determine the differences in the damaged layer degradation kinetics in two-phase lithium-containing ceramics based on Li2ZrO3 and Li4SiO4 compounds in the case of irradiation with protons and helium ions, simulating the gas swelling and blistering processes, as well as the accumulation of radiolysis products in the damaged layer. During the conducted studies it was established that in the case of proton irradiation, the dominant role at fluences of 1015–1017 cm−2 is played by oxygen vacancies, the change in the concentration of which upon reaching critical values causes a decrease in the thermophysical properties, and disordering of the damaged layer. In this case, the accumulation of radiolysis products in the form of HC2 – and Zr3+ -defects in the structure of the damaged layer is observed at fluences of 5 × 1017 cm−2, while when irradiated with He2+ ions, the formation of these types of HC2 – and Zr3+ -defects is observed at a fluence of 1017 cm−2. Comparison of the concentration dependences of defects in the damaged layer on the atomic displacement value under irradiation with protons and He2+ ions revealed that the formation of oxygen vacancies under irradiation with He2+ ions is more intense than in the case of irradiation with protons, which in turn results in more pronounced processes of accumulation of radiolysis products in the case of high-dose irradiation.