OptiPower AI: A deep reinforcement learning framework for intelligent cluster energy management and V2X optimization in industrial applications

IF 6.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Industrial Engineering Pub Date : 2025-02-01 DOI:10.1016/j.cie.2024.110762
Sami Ben Slama
{"title":"OptiPower AI: A deep reinforcement learning framework for intelligent cluster energy management and V2X optimization in industrial applications","authors":"Sami Ben Slama","doi":"10.1016/j.cie.2024.110762","DOIUrl":null,"url":null,"abstract":"<div><div>Peer-to-peer (P2P) energy trading has emerged as a practical solution for efficient energy management, particularly with the rising affordability of renewable energy and electric vehicles (EVs). This paper introduces the Optimal Power Artificial Intelligence (OptiPower AI) algorithm, a significant advancement in Intelligent Cluster Energy Management (ICEM). OptiPower AI combines Double Deep Q-Network (DDQN)-based Deep Reinforcement Learning (DRL), Vehicle-to-Everything (V2X) technology, and P2P energy trading to optimize energy distribution among clusters of prosumers and consumers. The system efficiently manages Renewable Energy Sources (RES) and EVs, achieving a 19.18% reduction in energy costs and a 50.02% decrease in average energy prices across V2X and P2P scenarios.</div><div>OptiPower AI uses DRL to dynamically allocate energy and implement real-time pricing, enhancing energy efficiency and user satisfaction. Simulations based on meteorological data from Tunisia validate the system’s ability to improve thermal comfort, increase energy savings, and lower costs. The model’s parameters enable accurate forecasting and allocation, showcasing OptiPower AI’s reliability in variable demand conditions. This work advances the application of DRL in decentralized, sustainable P2P energy management systems for industrial clusters, addressing critical challenges in energy distribution, efficiency, and cost reduction.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110762"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224008842","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Peer-to-peer (P2P) energy trading has emerged as a practical solution for efficient energy management, particularly with the rising affordability of renewable energy and electric vehicles (EVs). This paper introduces the Optimal Power Artificial Intelligence (OptiPower AI) algorithm, a significant advancement in Intelligent Cluster Energy Management (ICEM). OptiPower AI combines Double Deep Q-Network (DDQN)-based Deep Reinforcement Learning (DRL), Vehicle-to-Everything (V2X) technology, and P2P energy trading to optimize energy distribution among clusters of prosumers and consumers. The system efficiently manages Renewable Energy Sources (RES) and EVs, achieving a 19.18% reduction in energy costs and a 50.02% decrease in average energy prices across V2X and P2P scenarios.
OptiPower AI uses DRL to dynamically allocate energy and implement real-time pricing, enhancing energy efficiency and user satisfaction. Simulations based on meteorological data from Tunisia validate the system’s ability to improve thermal comfort, increase energy savings, and lower costs. The model’s parameters enable accurate forecasting and allocation, showcasing OptiPower AI’s reliability in variable demand conditions. This work advances the application of DRL in decentralized, sustainable P2P energy management systems for industrial clusters, addressing critical challenges in energy distribution, efficiency, and cost reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OptiPower AI:用于工业应用中智能集群能源管理和 V2X 优化的深度强化学习框架
点对点(P2P)能源交易已成为高效能源管理的实用解决方案,特别是随着可再生能源和电动汽车(ev)的可负担性不断提高。本文介绍了智能集群能源管理(ICEM)的一项重要进展——最优功率人工智能(OptiPower AI)算法。OptiPower AI结合了基于双深度Q-Network (DDQN)的深度强化学习(DRL)、车联网(V2X)技术和P2P能源交易,以优化生产消费者和消费者集群之间的能源分配。该系统有效管理可再生能源(RES)和电动汽车,在V2X和P2P场景下,能源成本降低了19.18%,平均能源价格降低了50.02%。OptiPower AI使用DRL动态分配能源,实现实时定价,提高能源效率和用户满意度。基于突尼斯气象数据的模拟验证了该系统改善热舒适性、增加节能和降低成本的能力。该模型的参数能够实现准确的预测和分配,展示了OptiPower AI在可变需求条件下的可靠性。这项工作推进了DRL在分散的、可持续的产业集群P2P能源管理系统中的应用,解决了能源分配、效率和降低成本方面的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
期刊最新文献
Competing for the most profitable tour: the orienteering interdiction game A two-stage approach for collaborative scheduling of closed-loop manufacturing considering dynamic power cost: An enhanced Benders decomposition optimization Budget-scalable inference-time hybrid MCTS for enhancing DRL-based flexible job shop scheduling Integrated workforce and territory planning for home social care under variable demand A Data-Driven Multi-Objective optimization framework for dynamic job shop scheduling with order Acceptance, inventory and Energy-Aware decisions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1