{"title":"Coupled queues with server interruptions: Some solutions","authors":"Herwig Bruneel, Arnaud Devos","doi":"10.1016/j.peva.2024.102466","DOIUrl":null,"url":null,"abstract":"<div><div>We study three different <em>discrete-time</em> queueing systems, which accommodate two types of customers, named type 1 and type 2. New customers arrive independently from slot to slot, but the numbers of arrivals of both types in any slot are possibly mutually dependent; their joint probability generating function (<em>pgf</em>) is <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The service times of all customers are deterministically equal to one time slot.</div><div>We first consider a scenario (<em>Option</em> <span><math><mi>A</mi></math></span>) with <em>one single server</em> which is to be shared by the two customer types. Here, we assume that type-1 customers have <em>absolute service priority</em> over type-2 customers. Moreover, the server is subject to <em>random server interruptions</em>, which occur independently from slot to slot. We derive a functional equation for the steady-state joint pgf <span><math><mrow><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> of the numbers of type-1 and type-2 customers in the system. Relying on the application of Rouché’s theorem, we are able to explicitly solve the functional equation for <em>arbitrary</em> arrival pgfs <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, but more elegant results are obtained for some specific choices of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</div><div>Next, we focus on two different scenarios (<em>Option</em> <span><math><mi>B</mi></math></span> and <em>Option</em> <span><math><mi>C</mi></math></span>) where both customer types have their <em>own dedicated server</em>. Here, there are no service priorities involved. In Option <span><math><mi>B</mi></math></span>, the two servers experience <em>simultaneous</em> interruptions, whereas in Option <span><math><mi>C</mi></math></span>, <em>only one</em> of the servers is subject to interruptions. Again, we derive functional equations for the pgf <span><math><mrow><mi>U</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Although solving these equations for arbitrary arrival pgfs <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> seems infeasible, we succeed in finding exact closed-form solutions for specific choices of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Remarkably, the results obtained for the single-server priority system in Option <span><math><mi>A</mi></math></span> can be used to solve a specific instance of Option <span><math><mi>B</mi></math></span>, where the arrivals of both types of customers during any time slot are <em>partly identical</em>. It turns out that <em>(fully or partly) identical</em> arrivals also allow explicit solutions for Option <span><math><mi>C</mi></math></span>. In addition, we also provide other examples where the functional equations for Options <span><math><mi>B</mi></math></span> and <span><math><mi>C</mi></math></span> can be solved explicitly.</div></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"167 ","pages":"Article 102466"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531624000713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We study three different discrete-time queueing systems, which accommodate two types of customers, named type 1 and type 2. New customers arrive independently from slot to slot, but the numbers of arrivals of both types in any slot are possibly mutually dependent; their joint probability generating function (pgf) is . The service times of all customers are deterministically equal to one time slot.
We first consider a scenario (Option ) with one single server which is to be shared by the two customer types. Here, we assume that type-1 customers have absolute service priority over type-2 customers. Moreover, the server is subject to random server interruptions, which occur independently from slot to slot. We derive a functional equation for the steady-state joint pgf of the numbers of type-1 and type-2 customers in the system. Relying on the application of Rouché’s theorem, we are able to explicitly solve the functional equation for arbitrary arrival pgfs , but more elegant results are obtained for some specific choices of .
Next, we focus on two different scenarios (Option and Option ) where both customer types have their own dedicated server. Here, there are no service priorities involved. In Option , the two servers experience simultaneous interruptions, whereas in Option , only one of the servers is subject to interruptions. Again, we derive functional equations for the pgf . Although solving these equations for arbitrary arrival pgfs seems infeasible, we succeed in finding exact closed-form solutions for specific choices of . Remarkably, the results obtained for the single-server priority system in Option can be used to solve a specific instance of Option , where the arrivals of both types of customers during any time slot are partly identical. It turns out that (fully or partly) identical arrivals also allow explicit solutions for Option . In addition, we also provide other examples where the functional equations for Options and can be solved explicitly.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science