Mengying Wang , Han Wang , Lingyun Rong , Qi Yang , Zhilin Yang
{"title":"Unraveling the cellular response and detoxification efficiency of microalgal systems to naphthalene contamination in water","authors":"Mengying Wang , Han Wang , Lingyun Rong , Qi Yang , Zhilin Yang","doi":"10.1016/j.algal.2024.103850","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) contamination in water resources is a significant environmental issue due to its widespread presence and harmful effects on aquatic ecosystems and human health. Although microalgae offer a cost-effective and eco-friendly approach for PAH remediation, their use in this context has been less explored and presents technical challenges. This study focuses on the removal of naphthalene (NAP) from water using <em>Selenastrum capricornutum</em>. The relationship between biomass, photosynthetic activity, oxidative damage, removal rate, and degradation products was analyzed. Results showed that at a NAP concentration of 2.5 mg/L, <em>Selenastrum capricornutum</em> not only exhibited enhanced growth, with increased biomass and photosynthetic pigment content compared to the control group, but also achieved a 80.0 % total removal of NAP after 4 days. However, NAP concentrations between 10.0 and 20.0 mg/L inhibited microalgal growth, with inhibition rates of 14.5 % to 33.8 % after 8 days. The degradation experiments revealed that the removal of NAP by microalgae was mainly through biodegradation and partial adsorption, and the best removal effect was achieved at the appropriate concentration (5.0 mg/L), with the removal rate as high as 88.3 %. The microalgae's growth was notably enhanced during the exponential phase, suggesting that NAP by-products are of low or non-toxicity. The degradation rate constants (k) ranged from 0.03 h<sup>−1</sup> to 0.06 h<sup>−1</sup>, with half-lives (t₁/₂) between 13.19 and 18.75 h. LC-MS analysis confirmed that the by-products of NAP metabolism by microalgae are low or non-toxic. This study demonstrates that <em>Selenastrum capricornutum</em> is highly tolerant to NAP and effective in removing trace amounts of NAP from contaminated wastewater, highlighting its potential for PAH remediation using algae.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"85 ","pages":"Article 103850"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004624","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic hydrocarbons (PAHs) contamination in water resources is a significant environmental issue due to its widespread presence and harmful effects on aquatic ecosystems and human health. Although microalgae offer a cost-effective and eco-friendly approach for PAH remediation, their use in this context has been less explored and presents technical challenges. This study focuses on the removal of naphthalene (NAP) from water using Selenastrum capricornutum. The relationship between biomass, photosynthetic activity, oxidative damage, removal rate, and degradation products was analyzed. Results showed that at a NAP concentration of 2.5 mg/L, Selenastrum capricornutum not only exhibited enhanced growth, with increased biomass and photosynthetic pigment content compared to the control group, but also achieved a 80.0 % total removal of NAP after 4 days. However, NAP concentrations between 10.0 and 20.0 mg/L inhibited microalgal growth, with inhibition rates of 14.5 % to 33.8 % after 8 days. The degradation experiments revealed that the removal of NAP by microalgae was mainly through biodegradation and partial adsorption, and the best removal effect was achieved at the appropriate concentration (5.0 mg/L), with the removal rate as high as 88.3 %. The microalgae's growth was notably enhanced during the exponential phase, suggesting that NAP by-products are of low or non-toxicity. The degradation rate constants (k) ranged from 0.03 h−1 to 0.06 h−1, with half-lives (t₁/₂) between 13.19 and 18.75 h. LC-MS analysis confirmed that the by-products of NAP metabolism by microalgae are low or non-toxic. This study demonstrates that Selenastrum capricornutum is highly tolerant to NAP and effective in removing trace amounts of NAP from contaminated wastewater, highlighting its potential for PAH remediation using algae.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment