A comparative study on spin-to-charge and charge-to-spin conversion using modulated Dirac surface states of Bi2Se3

IF 8.7 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-01-01 DOI:10.1016/j.apsadv.2025.100693
Youngmin Lee , Jonghoon Kim , Seungwon Rho , Seok-Bo Hong , Hyeongmun Kim , Jaehan Park , Dajung Kim , Chul Kang , Myung-Ho Bae , Mann-Ho Cho
{"title":"A comparative study on spin-to-charge and charge-to-spin conversion using modulated Dirac surface states of Bi2Se3","authors":"Youngmin Lee ,&nbsp;Jonghoon Kim ,&nbsp;Seungwon Rho ,&nbsp;Seok-Bo Hong ,&nbsp;Hyeongmun Kim ,&nbsp;Jaehan Park ,&nbsp;Dajung Kim ,&nbsp;Chul Kang ,&nbsp;Myung-Ho Bae ,&nbsp;Mann-Ho Cho","doi":"10.1016/j.apsadv.2025.100693","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the mechanisms of spin-charge interconversion is a major challenge in modern spintronics. In this study, we investigate the complex charge-to-spin conversion (CSC) and spin-to-charge conversion (SCC) using the modulated Dirac surface state of Bi<sub>2</sub>Se<sub>3</sub> thin films. The role of Bi<sub>2</sub>Se<sub>3</sub>, which possesses a spin-momentum locked Dirac surface state (DSS), in the CSC and SCC processes is explored using spin-torque ferromagnetic resonance (ST-FMR) and terahertz emission methods, respectively. Distinct differences in spin Hall angles are observed in ultrathin Bi<sub>2</sub>Se<sub>3</sub> films on HfO<sub>2-x</sub>, compared to those on a typical substrate, indicating the dependence on the spin-orbit interaction. Specifically, the interaction of d-orbital of the unbound hafnium in HfO<sub>2-x</sub> and Bi<sub>2</sub>Se<sub>3</sub> enhances the spin-orbit interaction. In addition, we found that the complex interaction between the surface and bulk states affects the spin diffusion length and the spin current injection region. The influence of the surface state on the conversion processes decreases as the Bi<sub>2</sub>Se<sub>3</sub> film thickness increases, resulting in differing efficiency for SCC and CSC due to the asymmetrical stack structure. The findings using Bi<sub>2</sub>Se<sub>3</sub> ultrathin films enhance our understanding of DSS-related CSC and SCC mechanisms, paving the way for performance optimization of future spintronic devices.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100693"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanisms of spin-charge interconversion is a major challenge in modern spintronics. In this study, we investigate the complex charge-to-spin conversion (CSC) and spin-to-charge conversion (SCC) using the modulated Dirac surface state of Bi2Se3 thin films. The role of Bi2Se3, which possesses a spin-momentum locked Dirac surface state (DSS), in the CSC and SCC processes is explored using spin-torque ferromagnetic resonance (ST-FMR) and terahertz emission methods, respectively. Distinct differences in spin Hall angles are observed in ultrathin Bi2Se3 films on HfO2-x, compared to those on a typical substrate, indicating the dependence on the spin-orbit interaction. Specifically, the interaction of d-orbital of the unbound hafnium in HfO2-x and Bi2Se3 enhances the spin-orbit interaction. In addition, we found that the complex interaction between the surface and bulk states affects the spin diffusion length and the spin current injection region. The influence of the surface state on the conversion processes decreases as the Bi2Se3 film thickness increases, resulting in differing efficiency for SCC and CSC due to the asymmetrical stack structure. The findings using Bi2Se3 ultrathin films enhance our understanding of DSS-related CSC and SCC mechanisms, paving the way for performance optimization of future spintronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Bi2Se3 的调制狄拉克表面态进行自旋到电荷和电荷到自旋转换的比较研究
了解自旋电荷相互转换的机制是现代自旋电子学的主要挑战。在本研究中,我们利用调制Dirac表面态研究了Bi2Se3薄膜的复合电荷-自旋转换(CSC)和自旋-电荷转换(SCC)。采用自旋转矩铁磁共振(ST-FMR)和太赫兹发射方法分别探讨了具有自旋动量锁定狄拉克表面态(DSS)的Bi2Se3在CSC和SCC过程中的作用。在HfO2-x上的超薄Bi2Se3薄膜与在典型衬底上的薄膜相比,自旋霍尔角有明显的差异,这表明了自旋轨道相互作用的依赖性。具体来说,HfO2-x和Bi2Se3中未结合的铪的d轨道相互作用增强了自旋轨道相互作用。此外,我们发现表面态和体态之间的复杂相互作用影响了自旋扩散长度和自旋电流注入区域。随着Bi2Se3膜厚度的增加,表面状态对转换过程的影响减小,由于不对称的堆叠结构导致SCC和CSC的效率不同。使用Bi2Se3超薄膜的研究结果增强了我们对dss相关CSC和SCC机制的理解,为未来自旋电子器件的性能优化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Calcined Fe(III)-chelated poly(o-phenylenediamine-co-2-aminobenzenesulfonic acid) as cathode catalyst for anion-exchange membrane fuel cells Understanding crystal surface anisotropy of organic materials via molecular modelling and facet-specific experimental characterization Nanocrystalline graphite-patterned silicon substrates for molecularly imprinted biopolymer-based electrochemical detection of glyphosate Thermo-responsive nanostructured surface: Beeswax for enhanced condensation performance across solid, liquid, and transition states Effect of electropolishing conditions on nanostructured anodized surfaces for enhanced superhydrophilicity and corrosion resistance of 304 and 316 L Stainless Steels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1