Inference on dynamic systemic risk measures

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2025-01-01 DOI:10.1016/j.jeconom.2024.105936
Christian Francq, Jean-Michel Zakoïan
{"title":"Inference on dynamic systemic risk measures","authors":"Christian Francq,&nbsp;Jean-Michel Zakoïan","doi":"10.1016/j.jeconom.2024.105936","DOIUrl":null,"url":null,"abstract":"<div><div>Systemic risk measures (SRM) quantify the risk of a system induced by the possible distress of any of its components. Applications in economics and finance are numerous. We define a general dynamic framework for the risk factors, allowing us to obtain explicit expressions of the corresponding dynamic SRM. We deduce an easy-to-implement statistical approach which, based on semi-parametric assumptions, reduces to estimating univariate location-scale models and to computing (static) quantiles of the residuals. We derive a sound asymptotic theory (including confidence intervals, tests, validity of a residual bootstrap) for major SRM, namely the Conditional VaR (CoVaR) and Delta-CoVaR. Our theoretical results are illustrated via Monte-Carlo experiments and real financial and macroeconomic time series.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"247 ","pages":"Article 105936"},"PeriodicalIF":9.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002872","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Systemic risk measures (SRM) quantify the risk of a system induced by the possible distress of any of its components. Applications in economics and finance are numerous. We define a general dynamic framework for the risk factors, allowing us to obtain explicit expressions of the corresponding dynamic SRM. We deduce an easy-to-implement statistical approach which, based on semi-parametric assumptions, reduces to estimating univariate location-scale models and to computing (static) quantiles of the residuals. We derive a sound asymptotic theory (including confidence intervals, tests, validity of a residual bootstrap) for major SRM, namely the Conditional VaR (CoVaR) and Delta-CoVaR. Our theoretical results are illustrated via Monte-Carlo experiments and real financial and macroeconomic time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统风险度量(SRM)量化一个系统因其任何组成部分可能陷入困境而引发的风险。它在经济学和金融学中应用广泛。我们为风险因素定义了一个通用的动态框架,使我们能够获得相应动态 SRM 的明确表达式。我们推导出一种易于实施的统计方法,该方法基于半参数假设,简化为估算单变量位置尺度模型和计算残差的(静态)数量级。我们为主要的 SRM,即条件 VaR(CoVaR)和 Delta-CoVaR 推导出了完善的渐近理论(包括置信区间、检验、残差自举的有效性)。我们通过蒙特卡洛实验和实际金融与宏观经济时间序列来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
On time-varying panel data models with time-varying interactive fixed effects Three-dimensional heterogeneous panel data models with multi-level interactive fixed effects Penalized estimation of finite mixture models Identification and estimation of a search model with heterogeneous consumers and firms Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1