Malak A. Esseili , Revati Narwankar , Riya Hooda , Veronica Costantini , Mary K. Estes , Jan Vinjé , Issmat I. Kassem
{"title":"Human intestinal enteroids for evaluating the persistence of infectious human norovirus in raw surface freshwater","authors":"Malak A. Esseili , Revati Narwankar , Riya Hooda , Veronica Costantini , Mary K. Estes , Jan Vinjé , Issmat I. Kassem","doi":"10.1016/j.scitotenv.2025.178707","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, human norovirus (HuNoV) is the leading cause of foodborne illnesses. Norovirus transmission to fresh produce can occur via several sources, including contaminated irrigation water. HuNoV RNA has been detected in freshwater resources, but knowledge about virus infectivity is limited due to a historical lack of a HuNoV cell culture. Recently, HuNoV was shown to replicate in human intestinal enteroids (HIE). The objective of this study was to use HIE to evaluate the persistence of infectious HuNoV in raw (i.e. biologically active) surface freshwater. The virus was spiked into freshwater microcosms sampled from three freshwater ponds and then incubated inside an environmental chamber at 20–15 °C and 50–80 % relative humidity (day-night) and 12 h photoperiod. The water was tested for infectious HuNoV, intact HuNoV capsids, indigenous bacteria, and other water quality parameters over a period of 2 weeks. The persistence of infectious HuNoV in the three freshwater microcosms ranged from ≤1 day to ≥7 days. Decay rates for RNA from intact HuNoV capsids ranged from 0.04 to 0.54/day, predicting a 4.2 to 57.5 days, respectively for 1 log reduction. The intact virus showed a significant negative and positive linear relationship with indigenous bacteria and dissolved oxygen, respectively. Using multiple logistic regression, HuNoV RNA >4.4 log genomic equivalent/ml (Cycle threshold values <32) predicted higher probability of detecting infectious HuNoV in contaminated raw freshwater using HIE. Overall, our results provide valuable insights for enhancing quantitative microbial risk assessment models for pre-harvest agricultural water to understand the public health risks associated with the detection of HuNoV RNA in freshwater.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"966 ","pages":"Article 178707"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725003419","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, human norovirus (HuNoV) is the leading cause of foodborne illnesses. Norovirus transmission to fresh produce can occur via several sources, including contaminated irrigation water. HuNoV RNA has been detected in freshwater resources, but knowledge about virus infectivity is limited due to a historical lack of a HuNoV cell culture. Recently, HuNoV was shown to replicate in human intestinal enteroids (HIE). The objective of this study was to use HIE to evaluate the persistence of infectious HuNoV in raw (i.e. biologically active) surface freshwater. The virus was spiked into freshwater microcosms sampled from three freshwater ponds and then incubated inside an environmental chamber at 20–15 °C and 50–80 % relative humidity (day-night) and 12 h photoperiod. The water was tested for infectious HuNoV, intact HuNoV capsids, indigenous bacteria, and other water quality parameters over a period of 2 weeks. The persistence of infectious HuNoV in the three freshwater microcosms ranged from ≤1 day to ≥7 days. Decay rates for RNA from intact HuNoV capsids ranged from 0.04 to 0.54/day, predicting a 4.2 to 57.5 days, respectively for 1 log reduction. The intact virus showed a significant negative and positive linear relationship with indigenous bacteria and dissolved oxygen, respectively. Using multiple logistic regression, HuNoV RNA >4.4 log genomic equivalent/ml (Cycle threshold values <32) predicted higher probability of detecting infectious HuNoV in contaminated raw freshwater using HIE. Overall, our results provide valuable insights for enhancing quantitative microbial risk assessment models for pre-harvest agricultural water to understand the public health risks associated with the detection of HuNoV RNA in freshwater.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.