Shikuo Li , Shidong Li , Yixin Liu , Huimin Li , Haowei Yuan , Zidan Cao , Weihua Zou , Yu Li , Tao Li , Baozeng Ren
{"title":"Solubility, correlation, Hansen solubility parameter and thermodynamic properties of 2-naphthoxyacetic acid in three binary mixed solvents","authors":"Shikuo Li , Shidong Li , Yixin Liu , Huimin Li , Haowei Yuan , Zidan Cao , Weihua Zou , Yu Li , Tao Li , Baozeng Ren","doi":"10.1016/j.jct.2024.107433","DOIUrl":null,"url":null,"abstract":"<div><div>The solubility of 2-naphthoxyacetic acid in methanol + water, ethanol + water, and n-propanol + water was determined by static method over the temperature range of 278.15–323.15 K and atmospheric pressure. The experimental results demonstrated that the solubility of 2-Naphthoxyacetic Acid (BNOA) in three binary mixed solvents increased with the rise in the mass fraction of the alcoholic solvents at constant temperature. Additionally, the solubility of BNOA in the identified binary solvents demonstrated a positive correlation with temperature throughout the temperature range studied. Three mathematical models: including the modified Apelblat equation, NRTL model, the Ma model, were employed to fit the experimental solubility data. The results suggest that the modified Apelblat model exhibited the most favorable correlation. The solubility of BNOA in the studied solvents was discussed using the Hansen Solubility Parameters (HSPs), providing a reasonable explanation for the solubility of BNOA in three binary solvents. Using molecular dynamic (MD) simulation to obtain the radial distribution function (RDF) and analyzing the intermolecular interactions between solutes and binary mixed solvents, the findings indicated that the interactions between the solute and solvent, as well as between the solvent and solvent, exerted a considerable influence on the dissolution behavior of BNOA in the binary mixture. Based on the van’t Hoff equation, the apparent thermodynamic parameters (<span><math><mrow><msub><mi>Δ</mi><mrow><mi>sol</mi></mrow></msub><msup><mrow><mi>G</mi></mrow><mi>o</mi></msup></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mrow><mi>sol</mi></mrow></msub><msup><mrow><mi>H</mi></mrow><mi>o</mi></msup></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mrow><mi>sol</mi></mrow></msub><msup><mrow><mi>S</mi></mrow><mi>o</mi></msup></mrow></math></span>, <span><math><msub><mi>ζ</mi><mi>H</mi></msub></math></span> and <span><math><msub><mi>ζ</mi><mrow><mi>TS</mi></mrow></msub></math></span>) of the dissolution process were calculated, and the results showed that the dissolution process of BNOA in the studied mixed solvent was an endothermic and entropy increasing process, with enthalpy contribution greater than entropy contribution during the dissolution process.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"204 ","pages":"Article 107433"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424001861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solubility of 2-naphthoxyacetic acid in methanol + water, ethanol + water, and n-propanol + water was determined by static method over the temperature range of 278.15–323.15 K and atmospheric pressure. The experimental results demonstrated that the solubility of 2-Naphthoxyacetic Acid (BNOA) in three binary mixed solvents increased with the rise in the mass fraction of the alcoholic solvents at constant temperature. Additionally, the solubility of BNOA in the identified binary solvents demonstrated a positive correlation with temperature throughout the temperature range studied. Three mathematical models: including the modified Apelblat equation, NRTL model, the Ma model, were employed to fit the experimental solubility data. The results suggest that the modified Apelblat model exhibited the most favorable correlation. The solubility of BNOA in the studied solvents was discussed using the Hansen Solubility Parameters (HSPs), providing a reasonable explanation for the solubility of BNOA in three binary solvents. Using molecular dynamic (MD) simulation to obtain the radial distribution function (RDF) and analyzing the intermolecular interactions between solutes and binary mixed solvents, the findings indicated that the interactions between the solute and solvent, as well as between the solvent and solvent, exerted a considerable influence on the dissolution behavior of BNOA in the binary mixture. Based on the van’t Hoff equation, the apparent thermodynamic parameters (, , , and ) of the dissolution process were calculated, and the results showed that the dissolution process of BNOA in the studied mixed solvent was an endothermic and entropy increasing process, with enthalpy contribution greater than entropy contribution during the dissolution process.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.