The metabolic strategy of phosphorus-accumulating organisms in response to low temperature in micro pressure swirl reactor

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2025-02-01 DOI:10.1016/j.jece.2024.115036
Xi Tian , Xue Yin , Xiaona Ji , Hongyan Li , Huanyun Duan , Kunyu Zhang , Dejun Bian
{"title":"The metabolic strategy of phosphorus-accumulating organisms in response to low temperature in micro pressure swirl reactor","authors":"Xi Tian ,&nbsp;Xue Yin ,&nbsp;Xiaona Ji ,&nbsp;Hongyan Li ,&nbsp;Huanyun Duan ,&nbsp;Kunyu Zhang ,&nbsp;Dejun Bian","doi":"10.1016/j.jece.2024.115036","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of low temperature on the growth and metabolism of phosphorus-accumulating organisms (PAO) is crucial for maintaining the stability of organic removal efficiency. To investigate how lowering the temperature affects PAO's metabolic strategy, a micro pressure swirl reactor (MPSR) was operated at temperatures of 15, 12, and 10℃. The interactions and metabolic pathways of the microbial community in the system were examined. The results showed total phosphorus (TP) removal rate efficiencies were 97.0 %, 94.0 %, and 94.8 % in 15, 12 and 10℃, respectively. As the temperature decreased, glycogen consumption decreased by 27.44 mg/gMLSS, while poly-β-hydroxybutyrate (PHB) accumulation and consumption increased by 33.80 and 37.88 mg/gMLSS, respectively. Two essential genera of PAO, <em>Rhodocyclus</em>, and <em>Dechloromonas</em> increased from 0.70 % and 0.31–3.04 % and 2.79 % respectively. The metabolism of PAO changed as the temperature decreased. Glycolysis was inhibited at temperatures 12 and 10℃, and PAO applied an increase in phosphorus metabolism to meet the energy requirements for growth metabolism. This conversion in metabolic strategy helped PAO gain a competitive advantage and ensured that MPSR maintained good phosphorus organic matter removal at low temperatures.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 1","pages":"Article 115036"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724031683","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of low temperature on the growth and metabolism of phosphorus-accumulating organisms (PAO) is crucial for maintaining the stability of organic removal efficiency. To investigate how lowering the temperature affects PAO's metabolic strategy, a micro pressure swirl reactor (MPSR) was operated at temperatures of 15, 12, and 10℃. The interactions and metabolic pathways of the microbial community in the system were examined. The results showed total phosphorus (TP) removal rate efficiencies were 97.0 %, 94.0 %, and 94.8 % in 15, 12 and 10℃, respectively. As the temperature decreased, glycogen consumption decreased by 27.44 mg/gMLSS, while poly-β-hydroxybutyrate (PHB) accumulation and consumption increased by 33.80 and 37.88 mg/gMLSS, respectively. Two essential genera of PAO, Rhodocyclus, and Dechloromonas increased from 0.70 % and 0.31–3.04 % and 2.79 % respectively. The metabolism of PAO changed as the temperature decreased. Glycolysis was inhibited at temperatures 12 and 10℃, and PAO applied an increase in phosphorus metabolism to meet the energy requirements for growth metabolism. This conversion in metabolic strategy helped PAO gain a competitive advantage and ensured that MPSR maintained good phosphorus organic matter removal at low temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微压漩涡反应器中聚磷生物应对低温的代谢策略
低温对磷积累生物(PAO)生长和新陈代谢的影响对于保持有机物去除效率的稳定性至关重要。为了研究降低温度如何影响 PAO 的代谢策略,在 15、12 和 10℃的温度下运行了微压漩涡反应器(MPSR)。对系统中微生物群落的相互作用和代谢途径进行了研究。结果表明,总磷(TP)去除率在 15、12 和 10℃时分别为 97.0%、94.0% 和 94.8%。随着温度的降低,糖原消耗量减少了 27.44 mg/gMLSS,而聚-β-羟基丁酸(PHB)的积累量和消耗量则分别增加了 33.80 和 37.88 mg/gMLSS。PAO 的两个重要属 Rhodocyclus 和 Dechloromonas 分别从 0.70 % 和 0.31 % 增加到 3.04 % 和 2.79 %。PAO 的新陈代谢随着温度的降低而变化。在温度为 12 和 10℃时,糖酵解受到抑制,PAO 增加了磷代谢,以满足生长代谢对能量的需求。这种代谢策略的转变有助于 PAO 获得竞争优势,并确保 MPSR 在低温条件下保持良好的磷有机物去除率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Advances in wearable nanomaterial-based sensors for environmental and health monitoring: A comprehensive review Harnessing MOF-based and derived catalysts for efficient BTEX oxidation: Progress, challenges, and future directions Photochemical remediation of wastewater pollutants using metal phthalocyanine-based composites: A review A review of redox-active polymers for selective electrochemical removal of uncharged organic pollutants from water Advances and recent applications in high-energy {001} facets of anatase TiO2: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1