Charge trapping in SiO2 substrate during electron beam deposition of CaF2 thin films of different thicknesses

Q2 Engineering Optical Materials: X Pub Date : 2025-02-01 DOI:10.1016/j.omx.2025.100400
Marina Romanova , Sergii Chertopalov , Yuri Dekhtyar , Ladislav Fekete , Ján Lančok , Michal Novotný , Petr Pokorný , Anatoli I. Popov , Hermanis Sorokins , Aleksandr Vilken
{"title":"Charge trapping in SiO2 substrate during electron beam deposition of CaF2 thin films of different thicknesses","authors":"Marina Romanova ,&nbsp;Sergii Chertopalov ,&nbsp;Yuri Dekhtyar ,&nbsp;Ladislav Fekete ,&nbsp;Ján Lančok ,&nbsp;Michal Novotný ,&nbsp;Petr Pokorný ,&nbsp;Anatoli I. Popov ,&nbsp;Hermanis Sorokins ,&nbsp;Aleksandr Vilken","doi":"10.1016/j.omx.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><div>The charge trapping phenomenon in the SiO<sub>2</sub> layer of Si/SiO<sub>2</sub> substrates during the electron beam deposition of CaF<sub>2</sub> thin films of varying thicknesses (50–277 nm) was studied. Photoelectron emission (PE) spectroscopy was employed to analyze electron trapping mechanisms induced by the deposition process. Distinct peaks corresponding to electron traps in the SiO<sub>2</sub> layer were identified in the PE spectra of CaF<sub>2</sub> films. The intensity of these peaks varied with the film thickness and the accumulated electron irradiation dose. The study also investigated the relaxation of the PE spectra in both vacuum and air environments. In a vacuum, the PE peaks and integrated PE intensity remained stable for at least 24 h for CaF<sub>2</sub> films of all thicknesses. When exposed to air, the PE peaks persisted for several days in films 125 nm thick or thinner but relaxed within several hours in 277 nm films. This rapid relaxation was attributed to a relatively high irradiation dose (about 2.5 mC) obtained during the fabrication of the 277 nm film, leading to an increased concentration of ionized F centers at the SiO<sub>2</sub>–CaF<sub>2</sub> interface and the formation of (O<sup>2–</sup>-V<sub>A</sub>) centers upon air exposure. The relaxation of the PE spectrum intensity was attributed to electron transfer from SiO<sub>2</sub> traps to (O<sup>2–</sup>-V<sub>A</sub>) centers. Furthermore, the possibility of a 260 nm electron escape depth for CaF<sub>2</sub> material was confirmed.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"25 ","pages":"Article 100400"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147825000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The charge trapping phenomenon in the SiO2 layer of Si/SiO2 substrates during the electron beam deposition of CaF2 thin films of varying thicknesses (50–277 nm) was studied. Photoelectron emission (PE) spectroscopy was employed to analyze electron trapping mechanisms induced by the deposition process. Distinct peaks corresponding to electron traps in the SiO2 layer were identified in the PE spectra of CaF2 films. The intensity of these peaks varied with the film thickness and the accumulated electron irradiation dose. The study also investigated the relaxation of the PE spectra in both vacuum and air environments. In a vacuum, the PE peaks and integrated PE intensity remained stable for at least 24 h for CaF2 films of all thicknesses. When exposed to air, the PE peaks persisted for several days in films 125 nm thick or thinner but relaxed within several hours in 277 nm films. This rapid relaxation was attributed to a relatively high irradiation dose (about 2.5 mC) obtained during the fabrication of the 277 nm film, leading to an increased concentration of ionized F centers at the SiO2–CaF2 interface and the formation of (O2–-VA) centers upon air exposure. The relaxation of the PE spectrum intensity was attributed to electron transfer from SiO2 traps to (O2–-VA) centers. Furthermore, the possibility of a 260 nm electron escape depth for CaF2 material was confirmed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
期刊最新文献
Study of the effect of phase formation processes on the change in optical and thermal properties of Nd2Zr2O7 ceramics with a pyrochlore structure Methane sensors based on ZnGa2O4 ceramics with addition of Er for combustion monitoring systems Spatial mapping of optical constants and thickness variations in ITO films and SiO2 buffer layers La doped Lu2O3 scintillator CsPbCl3:Yb3+ nanocrystals: Adverse effects of colloidally stable ytterbium-rich reaction by-products on luminescent down-conversion performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1