{"title":"Structural analysis of wheat glutenins by diagonal electrophoresis for disulfide bond detection","authors":"Keiko Kizawa , Tatsuya Sonoda , Shizen Ohnishi , Katsuyuki Hayakawa","doi":"10.1016/j.jcs.2024.104088","DOIUrl":null,"url":null,"abstract":"<div><div>Gluten is a wheat-specific protein aggregate that strongly affects dough properties and mainly comprises glutenins and gliadins. Glutenins form large complexes through intermolecular disulfide bonds, which have not been fully structurally characterized. Herein, the structures of glutenins in four wheat cultivars were analyzed via CNBr digestion, which resulted in cleavage at methionine residues to afford peptides with molecular weights close to those of intact high-molecular-weight glutenin subunits (HMW-GSs). The diagonal electrophoresis of these peptides enabled the partial visualization of the disulfide bond–connected glutenin structure. This structure was formed before the mixing of flour and water and was present in all cultivars, with its composition depending on the cultivar-specific glutenin genotype. The constituent proteins were identified as HMW-GSs, low-molecular-weight glutenin subunits, α-gliadin, and serpin using liquid chromatography-tandem mass spectrometry. These results demonstrated that HMW-GSs formed a complex with disulfide bonds, even though the cysteines used for head-to-tail bonding were cleaved by CNBr. Until now, the HMW-GSs in glutenins were thought to be linearly disulfide-bonded via head-to-tail bonds. However, our results suggest that the cysteines in the central part are also disulfide-bonded, forming a branched structure.</div></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"121 ","pages":"Article 104088"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0733521024002467","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gluten is a wheat-specific protein aggregate that strongly affects dough properties and mainly comprises glutenins and gliadins. Glutenins form large complexes through intermolecular disulfide bonds, which have not been fully structurally characterized. Herein, the structures of glutenins in four wheat cultivars were analyzed via CNBr digestion, which resulted in cleavage at methionine residues to afford peptides with molecular weights close to those of intact high-molecular-weight glutenin subunits (HMW-GSs). The diagonal electrophoresis of these peptides enabled the partial visualization of the disulfide bond–connected glutenin structure. This structure was formed before the mixing of flour and water and was present in all cultivars, with its composition depending on the cultivar-specific glutenin genotype. The constituent proteins were identified as HMW-GSs, low-molecular-weight glutenin subunits, α-gliadin, and serpin using liquid chromatography-tandem mass spectrometry. These results demonstrated that HMW-GSs formed a complex with disulfide bonds, even though the cysteines used for head-to-tail bonding were cleaved by CNBr. Until now, the HMW-GSs in glutenins were thought to be linearly disulfide-bonded via head-to-tail bonds. However, our results suggest that the cysteines in the central part are also disulfide-bonded, forming a branched structure.
期刊介绍:
The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.