Formal safety verification of non-deterministic systems based on probabilistic reachability computation

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Systems & Control Letters Pub Date : 2025-02-01 DOI:10.1016/j.sysconle.2024.106014
Yuminghao Xiao, Tianbing Xia, Hongdong Wang
{"title":"Formal safety verification of non-deterministic systems based on probabilistic reachability computation","authors":"Yuminghao Xiao,&nbsp;Tianbing Xia,&nbsp;Hongdong Wang","doi":"10.1016/j.sysconle.2024.106014","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a formal safety verification method based on analytic probabilistic reachability computation, which can estimate the probability of controlled non-deterministic systems entering unsafe states subject to disturbances. Specifically, we employ stochastic differential equations (SDEs) to describe the dynamics of the system and resort to a regularized indicator function to express the collision probability between the state trajectory of the system and unsafe states. We proceed to formulate this collision probability as the viscosity solution to a second-order variational-inequality and provide a rigorous proof for such a novel interpretation. Moreover, we discuss the ENO-Godunov scheme for solving the deduced variational-inequality, which obviates the need for Monte-Carlo simulations and the optimality condition along a complex boundary. The developed framework offers a structured approach to identify potential risks in safety critical systems and maintains a user-friendly implementation. Lastly, we demonstrate the above application in a safety verification problem related to maritime navigation.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"196 ","pages":"Article 106014"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124003025","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a formal safety verification method based on analytic probabilistic reachability computation, which can estimate the probability of controlled non-deterministic systems entering unsafe states subject to disturbances. Specifically, we employ stochastic differential equations (SDEs) to describe the dynamics of the system and resort to a regularized indicator function to express the collision probability between the state trajectory of the system and unsafe states. We proceed to formulate this collision probability as the viscosity solution to a second-order variational-inequality and provide a rigorous proof for such a novel interpretation. Moreover, we discuss the ENO-Godunov scheme for solving the deduced variational-inequality, which obviates the need for Monte-Carlo simulations and the optimality condition along a complex boundary. The developed framework offers a structured approach to identify potential risks in safety critical systems and maintains a user-friendly implementation. Lastly, we demonstrate the above application in a safety verification problem related to maritime navigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
期刊最新文献
Almost periodic turnpike phenomenon for time-dependent systems A novel necessary and sufficient condition for the stability of 2×2 first-order linear hyperbolic systems Data-driven dynamic periodic event-triggered control for unknown linear systems: A hybrid system approach Input-to-state robust safety of switched nonlinear systems using multiple barrier functions A non-stochastic control method for systems under small random jumps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1