{"title":"On computation of approximate solutions to large-scale backstepping kernel equations via continuum approximation","authors":"Jukka-Pekka Humaloja, Nikolaos Bekiaris-Liberis","doi":"10.1016/j.sysconle.2024.105982","DOIUrl":null,"url":null,"abstract":"<div><div>We provide two methods for computation of continuum backstepping kernels that arise in control of continua (ensembles) of linear hyperbolic PDEs and which can approximate backstepping kernels arising in control of a large-scale, PDE system counterpart (with computational complexity that does not grow with the number of state components of the large-scale system). In the first method, we provide explicit formulae for the solution to the continuum kernels PDEs, employing a (triple) power series representation of the continuum kernel and establishing its convergence properties. In this case, we also provide means for reducing computational complexity by properly truncating the power series (in the powers of the ensemble variable). In the second method, we identify a class of systems for which the solution to the continuum (and hence, also an approximate solution to the respective large-scale) kernel equations can be constructed in closed form. We also present numerical examples to illustrate computational efficiency/accuracy of the approaches, as well as to validate the stabilization properties of the approximate control kernels, constructed based on the continuum.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"196 ","pages":"Article 105982"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002706","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We provide two methods for computation of continuum backstepping kernels that arise in control of continua (ensembles) of linear hyperbolic PDEs and which can approximate backstepping kernels arising in control of a large-scale, PDE system counterpart (with computational complexity that does not grow with the number of state components of the large-scale system). In the first method, we provide explicit formulae for the solution to the continuum kernels PDEs, employing a (triple) power series representation of the continuum kernel and establishing its convergence properties. In this case, we also provide means for reducing computational complexity by properly truncating the power series (in the powers of the ensemble variable). In the second method, we identify a class of systems for which the solution to the continuum (and hence, also an approximate solution to the respective large-scale) kernel equations can be constructed in closed form. We also present numerical examples to illustrate computational efficiency/accuracy of the approaches, as well as to validate the stabilization properties of the approximate control kernels, constructed based on the continuum.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.