Muhammad Zaki Almuzakki , Bayu Jayawardhana , Aneel Tanwani , Antonis I. Vakis
{"title":"Exponential stabilization of linear systems using nearest-action control with countable input set","authors":"Muhammad Zaki Almuzakki , Bayu Jayawardhana , Aneel Tanwani , Antonis I. Vakis","doi":"10.1016/j.sysconle.2024.105992","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies stabilization of linear time-invariant (LTI) systems when control actions can only be realized in <em>finitely</em> many directions where it is possible to actuate uniformly or logarithmically extended positive scaling factors in each direction. Furthermore, a nearest-action selection approach is used to map the continuous measurements to a realizable action where we show that the approach satisfies a <em>weak</em> sector condition for multiple-input multiple-output (MIMO) systems. Using the notion of input-to-state stability, under some assumptions imposed on the transfer function of the system, we show that the closed-loop system converges to the target ball exponentially fast. Moreover, when logarithmic extension for the scaling factors is realizable, the closed-loop system is able to achieve asymptotic stability instead of only practical stability. Finally, we present an example of the application that confirms our analysis.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"196 ","pages":"Article 105992"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002809","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies stabilization of linear time-invariant (LTI) systems when control actions can only be realized in finitely many directions where it is possible to actuate uniformly or logarithmically extended positive scaling factors in each direction. Furthermore, a nearest-action selection approach is used to map the continuous measurements to a realizable action where we show that the approach satisfies a weak sector condition for multiple-input multiple-output (MIMO) systems. Using the notion of input-to-state stability, under some assumptions imposed on the transfer function of the system, we show that the closed-loop system converges to the target ball exponentially fast. Moreover, when logarithmic extension for the scaling factors is realizable, the closed-loop system is able to achieve asymptotic stability instead of only practical stability. Finally, we present an example of the application that confirms our analysis.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.