{"title":"Research on D-shape PCF temperature sensor with simple structure and high sensitivity","authors":"Qiunan Zhang , Zhao Zhang , Can’er Cheng, Chuanyang Huang, Xiangyu Liao, Jian Tang, Junhui Hu, Yongmei Wang, Weijia Shao","doi":"10.1016/j.ijleo.2025.172228","DOIUrl":null,"url":null,"abstract":"<div><div>A D-type photonic crystal fiber optic temperature sensor incorporating a gold nanowire was developed. The design and optimization process utilized the finite element method to refine key sensor parameters, including the diameter of the air holes within the fiber, the dimensions of the gold nanowires, and the spacing between the air holes. Through this optimization, the optimal structural parameters were determined. The temperature sensing properties of the sensor were investigated, demonstrating a sensing capability within the range of 10–50 °C, achieving a maximum sensitivity of −19.0 nm/°C. The sensor exhibits notable performance, characterized by a straightforward structural design and a fabrication process of relatively low complexity, highlighting its strong potential for applications in temperature sensing technology.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"323 ","pages":"Article 172228"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625000166","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A D-type photonic crystal fiber optic temperature sensor incorporating a gold nanowire was developed. The design and optimization process utilized the finite element method to refine key sensor parameters, including the diameter of the air holes within the fiber, the dimensions of the gold nanowires, and the spacing between the air holes. Through this optimization, the optimal structural parameters were determined. The temperature sensing properties of the sensor were investigated, demonstrating a sensing capability within the range of 10–50 °C, achieving a maximum sensitivity of −19.0 nm/°C. The sensor exhibits notable performance, characterized by a straightforward structural design and a fabrication process of relatively low complexity, highlighting its strong potential for applications in temperature sensing technology.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.