Dynamic Analysis of Uniformity and Difference for Grid-following and Grid-forming Voltage Source Converters Using Phasor and Topological Homology Methods

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Modern Power Systems and Clean Energy Pub Date : 2025-01-27 DOI:10.35833/MPCE.2024.000722
Haiyu Zhao;Hongyu Zhou;Wei Yao;Qihang Zong;Jinyu Wen
{"title":"Dynamic Analysis of Uniformity and Difference for Grid-following and Grid-forming Voltage Source Converters Using Phasor and Topological Homology Methods","authors":"Haiyu Zhao;Hongyu Zhou;Wei Yao;Qihang Zong;Jinyu Wen","doi":"10.35833/MPCE.2024.000722","DOIUrl":null,"url":null,"abstract":"Grid-following voltage source converter (GFL-VSC) and grid-forming voltage source converter (GFM-VSC) have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid. This paper aims to clarify and recognize the difference between grid-following (GFL) and grid-forming (GFM) frequency-voltage support more intuitively and clearly. Firstly, the phasor model considering circuit constraints is established based on the port circuit equations of the converter. It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage pha-sore Secondly, based on topological homology, GFL and GFM controls are transformed and mapped into different trajectories. The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity. Based on the above model, it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response, type of coupling, and phasor trajectory. They differ in synchronization, power coupling mechanisms, dynamics, and active power-voltage operation domain in the quasi-steady state. Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system. Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"3-14"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855723/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Grid-following voltage source converter (GFL-VSC) and grid-forming voltage source converter (GFM-VSC) have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid. This paper aims to clarify and recognize the difference between grid-following (GFL) and grid-forming (GFM) frequency-voltage support more intuitively and clearly. Firstly, the phasor model considering circuit constraints is established based on the port circuit equations of the converter. It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage pha-sore Secondly, based on topological homology, GFL and GFM controls are transformed and mapped into different trajectories. The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity. Based on the above model, it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response, type of coupling, and phasor trajectory. They differ in synchronization, power coupling mechanisms, dynamics, and active power-voltage operation domain in the quasi-steady state. Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system. Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电网跟随电压源变流器(GFL-VSC)和电网形成电压源变流器(GFM-VSC)对电网的有功功率-频率和无功功率-电压支持具有不同的动态特性。本文旨在更直观、清晰地阐明和认识电网跟随型(GFL)和电网形成型(GFM)频率-电压支持的区别。首先,基于变流器的端口电路方程,建立了考虑电路约束的相量模型。其次,基于拓扑同源性,将 GFL 和 GFM 控制变换并映射为不同的轨迹。GFL 和 GFM 控制器特征曲线的拓扑相似性是其一致性的根本原因。根据上述模型,GFL-VSC 和 GFM-VSC 在有功功率响应、耦合类型和相位轨迹方面具有一致性。它们在同步、功率耦合机制、动态以及准稳定状态下的有功功率-电压运行域方面存在差异。对集成到四机双区系统中的 GFL-VSC 和 GFM-VSC 进行了案例研究。仿真结果验证了 GFL-VSC 和 GFM-VSC 的动态均匀性和差异得到了直观而全面的揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
期刊最新文献
Contents Dynamic Analysis of Uniformity and Difference for Grid-following and Grid-forming Voltage Source Converters Using Phasor and Topological Homology Methods Guest Editorial: Special Section on Dynamic Performance and Flexibility Enhancement of RES-dominated Power Systems with Grid-forming Converters DC Voltage Control with Grid-Forming Capability for Enhancing Stability of HVDC System A Systematic Small-signal Analysis Procedure for Improving Synchronization Stability of Grid-forming Virtual Synchronous Generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1