Predictive Modeling for Driver Insurance Premium Calculation Using Advanced Driver Assistance Systems and Contextual Information

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2025-01-08 DOI:10.1109/TITS.2024.3518572
Leandro Masello;Barry Sheehan;German Castignani;Montserrat Guillen;Finbarr Murphy
{"title":"Predictive Modeling for Driver Insurance Premium Calculation Using Advanced Driver Assistance Systems and Contextual Information","authors":"Leandro Masello;Barry Sheehan;German Castignani;Montserrat Guillen;Finbarr Murphy","doi":"10.1109/TITS.2024.3518572","DOIUrl":null,"url":null,"abstract":"Telematics devices have transformed driver risk assessment, allowing insurers to tailor premiums based on detailed evaluations of driving habits. However, integrating Advanced Driver Assistance Systems (ADAS) and contextualized geolocation data for predictive improvements remains underexplored due to the recent emergence of these technologies. This article introduces a novel risk assessment methodology that periodically computes weekly insurance premiums by incorporating ADAS risk indicators and contextualized geolocation data. Using a naturalistic dataset from a fleet of 354 commercial drivers over a year, we modeled the relationship between past claims and driving data, and use that to compute weekly premiums that penalize risky driving situations. Risk predictions are modeled through claims frequency using Poisson regression and claims occurrence probability using machine learning models, including XGBoost and TabNet, and interpreted with SHAP. The dataset is divided into weekly profiles containing aggregated driving behavior, ADAS events, and contextual attributes. Results indicate that both modeling approaches show consistent attribute impacts on driver risk. For claims occurrence probability, XGBoost achieved the lowest Log Loss, reducing it from 0.59 to 0.51 with the inclusion of all attributes; for claims frequency, no statistically significant differences were observed when including all attributes. However, adding ADAS and contextual attributes allows for a comprehensive and disaggregated interpretation of the resulting weekly premium. This dynamic pricing can be incorporated into the insurance lifecycle, enabling bespoke risk assessment based on emerging technologies, the driving context, and driver behavior.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 2","pages":"2202-2211"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10834470","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10834470/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Telematics devices have transformed driver risk assessment, allowing insurers to tailor premiums based on detailed evaluations of driving habits. However, integrating Advanced Driver Assistance Systems (ADAS) and contextualized geolocation data for predictive improvements remains underexplored due to the recent emergence of these technologies. This article introduces a novel risk assessment methodology that periodically computes weekly insurance premiums by incorporating ADAS risk indicators and contextualized geolocation data. Using a naturalistic dataset from a fleet of 354 commercial drivers over a year, we modeled the relationship between past claims and driving data, and use that to compute weekly premiums that penalize risky driving situations. Risk predictions are modeled through claims frequency using Poisson regression and claims occurrence probability using machine learning models, including XGBoost and TabNet, and interpreted with SHAP. The dataset is divided into weekly profiles containing aggregated driving behavior, ADAS events, and contextual attributes. Results indicate that both modeling approaches show consistent attribute impacts on driver risk. For claims occurrence probability, XGBoost achieved the lowest Log Loss, reducing it from 0.59 to 0.51 with the inclusion of all attributes; for claims frequency, no statistically significant differences were observed when including all attributes. However, adding ADAS and contextual attributes allows for a comprehensive and disaggregated interpretation of the resulting weekly premium. This dynamic pricing can be incorporated into the insurance lifecycle, enabling bespoke risk assessment based on emerging technologies, the driving context, and driver behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents Corrections to “Toward Infotainment Services in Vehicular Named Data Networking: A Comprehensive Framework Design and Its Realization” IEEE Intelligent Transportation Systems Society Information IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY Scanning the Issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1