Quantum Two-Way Protocol Beyond Superdense Coding: Joint Transfer of Data and Entanglement

Kristian S. Jensen;Lorenzo Valentini;René B. Christensen;Marco Chiani;Petar Popovski
{"title":"Quantum Two-Way Protocol Beyond Superdense Coding: Joint Transfer of Data and Entanglement","authors":"Kristian S. Jensen;Lorenzo Valentini;René B. Christensen;Marco Chiani;Petar Popovski","doi":"10.1109/TQE.2025.3528238","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs. The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated approach for managing entanglement within the communication protocol. To assess the performance of the proposed protocol, we consider its data rate and resource usage, and we analyze this both in an ideal setting with no decoherence and in a more realistic setting where decoherence must be taken into account. In the ideal case, the proposal offers a 50% increase in both data rate and resource usage efficiency compared to conventional protocols. Even when decoherence is taken into consideration, the quantum protocol performs better as long as the decoherence time is not extremely short. Finally, we present the results of implementing the protocol in a computer simulation based on the NetSquid framework. We compare the simulation results with the theoretical values.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10836906","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10836906/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs. The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated approach for managing entanglement within the communication protocol. To assess the performance of the proposed protocol, we consider its data rate and resource usage, and we analyze this both in an ideal setting with no decoherence and in a more realistic setting where decoherence must be taken into account. In the ideal case, the proposal offers a 50% increase in both data rate and resource usage efficiency compared to conventional protocols. Even when decoherence is taken into consideration, the quantum protocol performs better as long as the decoherence time is not extremely short. Finally, we present the results of implementing the protocol in a computer simulation based on the NetSquid framework. We compare the simulation results with the theoretical values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越超密集编码的量子双向协议:数据和纠缠的联合传输
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
Qubit Rate Modulation-Based Time Synchronization Mechanism for Multinode Quantum Networks Entanglement Routing in Quantum Networks: A Comprehensive Survey Engineering Quantum Error Correction Codes Using Evolutionary Algorithms Security and Fairness in Multiparty Quantum Secret Sharing Protocol Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1