Modeling of Conduction Mechanism in Filament-Free Multilayer Bulk RRAM

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2025-01-10 DOI:10.1109/TED.2024.3521953
Yucheng Zhou;Ashwani Kumar;Jaeseoung Park;Yuyi Zhang;Yue Zhou;Seonghyun Kim;Ertugrul Cubukcu;Duygu Kuzum
{"title":"Modeling of Conduction Mechanism in Filament-Free Multilayer Bulk RRAM","authors":"Yucheng Zhou;Ashwani Kumar;Jaeseoung Park;Yuyi Zhang;Yue Zhou;Seonghyun Kim;Ertugrul Cubukcu;Duygu Kuzum","doi":"10.1109/TED.2024.3521953","DOIUrl":null,"url":null,"abstract":"Filament-free bulk resistive-switching random access memory (RRAM) devices have been proposed to offer multilevel conductance states with less variations and noise and forming-free operation for neuromorphic computing applications. Understanding conduction mechanism and switching dynamics of filament-free bulk RRAM devices is crucial to optimize device characteristics and to build large-scale arrays for compute in memory and neuromorphic computing applications. Here, we first analyze switching characteristics of bulk RRAM by temperature-dependent I–V measurements. We then present a quantitative physical model describing the conduction across trilayer stack by a series combination of multiple conduction mechanisms across each layer. Using this model and fitting it to the experimental characteristics of filament-free bulk RRAM devices, we investigate the origin of bulk switching in trilayer stacks. We demonstrate that our model can be used as a guide to design bulk switching RRAM devices from multilayer stacks of metal oxides.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 2","pages":"646-652"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836780/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Filament-free bulk resistive-switching random access memory (RRAM) devices have been proposed to offer multilevel conductance states with less variations and noise and forming-free operation for neuromorphic computing applications. Understanding conduction mechanism and switching dynamics of filament-free bulk RRAM devices is crucial to optimize device characteristics and to build large-scale arrays for compute in memory and neuromorphic computing applications. Here, we first analyze switching characteristics of bulk RRAM by temperature-dependent I–V measurements. We then present a quantitative physical model describing the conduction across trilayer stack by a series combination of multiple conduction mechanisms across each layer. Using this model and fitting it to the experimental characteristics of filament-free bulk RRAM devices, we investigate the origin of bulk switching in trilayer stacks. We demonstrate that our model can be used as a guide to design bulk switching RRAM devices from multilayer stacks of metal oxides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无灯丝块状电阻开关随机存取存储器(RRAM)器件已被提出,可为神经形态计算应用提供变化和噪声较小的多级传导状态和无成型操作。了解无灯丝块状随机存取存储器件的传导机制和开关动态,对于优化器件特性和构建用于存储器计算和神经形态计算应用的大规模阵列至关重要。在这里,我们首先通过随温度变化的 I-V 测量来分析块状 RRAM 的开关特性。然后,我们提出了一个定量物理模型,该模型通过每层多种传导机制的串联组合,描述了三层堆栈的传导情况。利用该模型并将其与无灯丝块状 RRAM 器件的实验特性进行拟合,我们研究了三层堆栈中块状开关的起源。我们证明,我们的模型可用作设计金属氧化物多层堆叠体开关 RRAM 器件的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications Wide Band Gap Semiconductors for Automotive Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1