{"title":"Side-Channel Analysis of Integrate-and-Fire Neurons Within Spiking Neural Networks","authors":"Matthias Probst;Manuel Brosch;Georg Sigl","doi":"10.1109/TCSI.2024.3470135","DOIUrl":null,"url":null,"abstract":"Spiking neural networks gain increasing attention in constraint edge devices due to event-based low-power operation and little resource usage. Such edge devices often allow physical access, opening the door for Side-Channel Analysis. In this work, we introduce a novel robust attack strategy on the neuron level to retrieve the trained parameters of an implemented spiking neural network. Utilizing horizontal correlation power analysis, we demonstrate how to recover the weights and thresholds of a feed-forward spiking neural network implementation. We verify our methodology with real-world measurements of localized electromagnetic emanations of an FPGA design. Additionally, we propose countermeasures against the introduced novel attack approach. We evaluate shuffling and masking as countermeasures to protect the implementation against our proposed attack and demonstrate their effectiveness and limitations.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 2","pages":"548-560"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705320","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705320/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural networks gain increasing attention in constraint edge devices due to event-based low-power operation and little resource usage. Such edge devices often allow physical access, opening the door for Side-Channel Analysis. In this work, we introduce a novel robust attack strategy on the neuron level to retrieve the trained parameters of an implemented spiking neural network. Utilizing horizontal correlation power analysis, we demonstrate how to recover the weights and thresholds of a feed-forward spiking neural network implementation. We verify our methodology with real-world measurements of localized electromagnetic emanations of an FPGA design. Additionally, we propose countermeasures against the introduced novel attack approach. We evaluate shuffling and masking as countermeasures to protect the implementation against our proposed attack and demonstrate their effectiveness and limitations.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.