Lanthanide-based metal–organic frameworks (Ln-MOFs): synthesis, properties and applications

Kankan Patra and Haridas Pal
{"title":"Lanthanide-based metal–organic frameworks (Ln-MOFs): synthesis, properties and applications","authors":"Kankan Patra and Haridas Pal","doi":"10.1039/D4SU00271G","DOIUrl":null,"url":null,"abstract":"<p >Micro- and meso-porous solid materials based on metal–organic frameworks (MOFs) have been gaining significant attention for the last three decades as they offer diverse applications in a large number of areas. An advantage of these materials is that they can be rationally designed with desired characteristics using several metal ions belonging either to the s-, p-, d-, or f-block elements of the periodic table, in combination with suitable polytopic organic linkers (multidentate ligands), resulting in various structural and application aspects. Among the MOFs, those composed of lanthanide ions {Ln(<small>III</small>)}, commonly referred to as Ln-MOF systems, have attracted enormous attention because they display favorable characteristics, like large structural diversity, tailorable structural designs, tunable porosity, large surface area, high thermal stability, and immense chemical stability. All these characteristics are very useful for their widespread applications in diverse areas. Since Ln(<small>III</small>) ions possess higher coordination numbers compared to transition metal (TM) ions, Ln-MOF materials are generally more porous, offering better applications. Further, hybrid MOF systems consisting of both Ln(<small>III</small>) and TM ions (Ln–TM-MOF systems) can introduce additional features to these mixed metal porous materials for their much wider applications. Luminescence and magnetic properties of Ln(<small>III</small>) ions make these materials ideal for various display and sensing applications, in addition to their porosity-related applications. In this review article, our aim is to discuss the basic aspects, preparation methodologies, important properties, and utilizations of MOF materials with a special emphasis on Ln(<small>III</small>)-based MOF systems. Initially, a short introduction is provided on MOF systems, which is followed by other aspects of these materials as mentioned above. Subsequently, we sequentially highlight the interesting characteristics of these materials, including their structural aspects, porosity, magnetic properties, and luminescence behavior. Finally, some of the potential uses of these systems have been presented with special emphasis on their gas storage, catalysis and luminescence-based chemical sensing applications.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 629-660"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00271g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00271g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro- and meso-porous solid materials based on metal–organic frameworks (MOFs) have been gaining significant attention for the last three decades as they offer diverse applications in a large number of areas. An advantage of these materials is that they can be rationally designed with desired characteristics using several metal ions belonging either to the s-, p-, d-, or f-block elements of the periodic table, in combination with suitable polytopic organic linkers (multidentate ligands), resulting in various structural and application aspects. Among the MOFs, those composed of lanthanide ions {Ln(III)}, commonly referred to as Ln-MOF systems, have attracted enormous attention because they display favorable characteristics, like large structural diversity, tailorable structural designs, tunable porosity, large surface area, high thermal stability, and immense chemical stability. All these characteristics are very useful for their widespread applications in diverse areas. Since Ln(III) ions possess higher coordination numbers compared to transition metal (TM) ions, Ln-MOF materials are generally more porous, offering better applications. Further, hybrid MOF systems consisting of both Ln(III) and TM ions (Ln–TM-MOF systems) can introduce additional features to these mixed metal porous materials for their much wider applications. Luminescence and magnetic properties of Ln(III) ions make these materials ideal for various display and sensing applications, in addition to their porosity-related applications. In this review article, our aim is to discuss the basic aspects, preparation methodologies, important properties, and utilizations of MOF materials with a special emphasis on Ln(III)-based MOF systems. Initially, a short introduction is provided on MOF systems, which is followed by other aspects of these materials as mentioned above. Subsequently, we sequentially highlight the interesting characteristics of these materials, including their structural aspects, porosity, magnetic properties, and luminescence behavior. Finally, some of the potential uses of these systems have been presented with special emphasis on their gas storage, catalysis and luminescence-based chemical sensing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1