Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system†

Cuong N. Dao, Lope G. Tabil, Edmund Mupondwa, Tim Dumonceaux, Xue Li and Ajay K. Dalai
{"title":"Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system†","authors":"Cuong N. Dao, Lope G. Tabil, Edmund Mupondwa, Tim Dumonceaux, Xue Li and Ajay K. Dalai","doi":"10.1039/D4SU00769G","DOIUrl":null,"url":null,"abstract":"<p >This study proposes an innovative biorefinery concept, integrating microbial pretreatment (MBP), wet storage (WS), and mushroom cultivation to transform herbaceous biomass into high-value products, including biofuel pellets, Turkey tail mushrooms, and ethanol. This environmentally friendly approach reduces pretreatment times, economically delignifies lignocellulosic structures, and improves the durability and enzymatic digestibility of densified pellets. The biorefinery model includes five pellet-mushroom production facilities (Pellet Plant A) and one ethanol plant (Ethanol Plant A), strategically located approximately 140 km south of Saskatoon (50°53′16.1′′N, 106°42′15.5′′W) in the province of Saskatchewan, Canada, to minimize pellet transport distances. Pellet Plant A, with a capacity of 250 000 t per year, incurs unit production costs (UPC) of US$201–242 per t, primarily driven by the cost of fungal liquid inoculum preparation. These costs exceed those of conventional steam-explosion pellet plants, such as natural gas-fired (US$181 per t) and biomass-fired systems (US$166 per t). Consequently, ethanol produced at Ethanol Plant A, using these pellets, costs US$1.32 per L, compared to US$0.89 per L for centralized MBP straw bales-to-ethanol plants and US$0.57 per L for conventional dilute acid pretreatment plants. The economic viability of this biorefinery concept requires a minimum ethanol selling price (MESP) of US$1.03 per L and at least 50% farmer participation to achieve a positive net present value (NPV) without mushroom credits. However, integrating revenue from Turkey tail mushroom production significantly enhances financial outcomes, increasing Pellet Plant A's NPV by up to US$10 billion. This enables a reduction in pellet selling prices, lowering the MESP to US$0.77 per L with a pellet purchasing cost of US$100 per t. These findings demonstrate the economic feasibility and sustainability of this innovative biorefinery model, emphasizing the potential of combining microbial pretreatment technologies with diversified revenue streams.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1564-1583"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00769g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00769g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes an innovative biorefinery concept, integrating microbial pretreatment (MBP), wet storage (WS), and mushroom cultivation to transform herbaceous biomass into high-value products, including biofuel pellets, Turkey tail mushrooms, and ethanol. This environmentally friendly approach reduces pretreatment times, economically delignifies lignocellulosic structures, and improves the durability and enzymatic digestibility of densified pellets. The biorefinery model includes five pellet-mushroom production facilities (Pellet Plant A) and one ethanol plant (Ethanol Plant A), strategically located approximately 140 km south of Saskatoon (50°53′16.1′′N, 106°42′15.5′′W) in the province of Saskatchewan, Canada, to minimize pellet transport distances. Pellet Plant A, with a capacity of 250 000 t per year, incurs unit production costs (UPC) of US$201–242 per t, primarily driven by the cost of fungal liquid inoculum preparation. These costs exceed those of conventional steam-explosion pellet plants, such as natural gas-fired (US$181 per t) and biomass-fired systems (US$166 per t). Consequently, ethanol produced at Ethanol Plant A, using these pellets, costs US$1.32 per L, compared to US$0.89 per L for centralized MBP straw bales-to-ethanol plants and US$0.57 per L for conventional dilute acid pretreatment plants. The economic viability of this biorefinery concept requires a minimum ethanol selling price (MESP) of US$1.03 per L and at least 50% farmer participation to achieve a positive net present value (NPV) without mushroom credits. However, integrating revenue from Turkey tail mushroom production significantly enhances financial outcomes, increasing Pellet Plant A's NPV by up to US$10 billion. This enables a reduction in pellet selling prices, lowering the MESP to US$0.77 per L with a pellet purchasing cost of US$100 per t. These findings demonstrate the economic feasibility and sustainability of this innovative biorefinery model, emphasizing the potential of combining microbial pretreatment technologies with diversified revenue streams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1