The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO\(^\mathbf{+}\), BO and CN Diatomic Molecules
{"title":"The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO\\(^\\mathbf{+}\\), BO and CN Diatomic Molecules","authors":"Abdeslam Haddouche, Rabia Yekken","doi":"10.1007/s00601-025-01984-y","DOIUrl":null,"url":null,"abstract":"<div><p>The three-dimensional Schrödinger equation, where a non-linearity is caused by the introduction of an energy-dependent potential, is solved in the case of Energy-Dependent Manning-Rosen Potential (EDMRP) by means of extended quantum supersymmetry (EQS) combined with shape invariance, and Nikiforov–Uvarov (N–U) methods, using in both cases the Pekeris approximation for the centrifugal term. On the one hand, after determining the potential parameters according to experimental data, EQS and N–U results are compared to the numerical ones to show the effectiveness of our calculations. On the other hand, the effects of the non-linearity introduced via energy-dependent potentials in the Schrödinger equation are shown through a comparison made between energy-dependent and position-only-dependent cases of the Manning-Rosen potential. We considered some diatomic molecules CO<span>\\(^{+}\\)</span>, BO, and CN with the experimental values of their potential parameters. Our results allowed us to consider, as a particular case, the three-dimensional energy-dependent Hulthén potential.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01984-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional Schrödinger equation, where a non-linearity is caused by the introduction of an energy-dependent potential, is solved in the case of Energy-Dependent Manning-Rosen Potential (EDMRP) by means of extended quantum supersymmetry (EQS) combined with shape invariance, and Nikiforov–Uvarov (N–U) methods, using in both cases the Pekeris approximation for the centrifugal term. On the one hand, after determining the potential parameters according to experimental data, EQS and N–U results are compared to the numerical ones to show the effectiveness of our calculations. On the other hand, the effects of the non-linearity introduced via energy-dependent potentials in the Schrödinger equation are shown through a comparison made between energy-dependent and position-only-dependent cases of the Manning-Rosen potential. We considered some diatomic molecules CO\(^{+}\), BO, and CN with the experimental values of their potential parameters. Our results allowed us to consider, as a particular case, the three-dimensional energy-dependent Hulthén potential.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).